Решение дифференциальных уравнений с комплексными корнями

Пример комплексной подстановки при решении линейного неоднородного дифференциального уравнения

Метод понижения порядка линейного неоднородного дифференциального уравнения с комплексными корнями характеристического уравнения

Рассмотрим линейное неоднородное дифференциальное уравнение с постоянными коэффициентами n-го порядка:
(1) .
Мы полагаем, что коэффициенты этого уравнения являются действительными числами. Здесь мы рассматриваем случай, когда характеристическое уравнение
(2)
имеет комплексные корни.

Для решения уравнения (1), применим метод понижения порядка. Поскольку коэффициенты характеристического уравнения (2) являются действительными числами, то его комплексные корни являются попарно комплексно сопряженными. Пусть – два комплексно сопряженные корня: . Запишем исходное уравнение (1) в следующем виде:
(3) ,
где – оператор дифференцирования.

Обозначим:
.
Тогда уравнение (3) принимает следующий вид:
.
Сделаем подстановку:
(4) .
Получаем уравнение первого порядка с комплексным коэффициентом :
.
Или
(5) .
Решение этого уравнения имеет следующий вид (см. страницу метод понижения порядка ):
,
где – комплексная постоянная.

Далее замечаем, что поскольку исходное уравнение (1) имеет действительные коэффициенты, то переменная u и ее производная u′ должны быть действительными. Выразим комплексный корень через действительную и мнимую части:
.
Подставим в (4):
.
Извлекая мнимую часть, получаем:
.
Отсюда
.

Таким образом, в случае с комплексными корнями, один этап решения приводит к понижению порядка на две единицы.

Пример решения дифференциального уравнения

Решить уравнение
(П1) .

Перепишем уравнение в следующем виде:
.
Вводим обозначение :
.

Характеристическое уравнение

имеет комплексные корни: . Тогда
.

Переписываем исходное уравнение:
;
.
Делаем подстановку:
;
(П2) .
Тогда уравнение принимает вид:
;
(П3) .

Это линейное неоднородное дифференциальное уравнение первого порядка. Ищем решение с помощью интегрирующего множителя. Умножим на и выполняем преобразования:
;
;
(П4) ,
где – комплексная постоянная; – действительные постоянные.

Вычисляем интеграл в (П4) с помощью подстановки .

.

Выразим арктангенс через логарифм, используя уравнение: .
;
.
Отсюда
(П5) .

Теперь в правой части (П6) нам нужно отделить вещественную и мнимую части. Мнимая часть уравнения (П6) и даст искомое решение y .

Для преобразования логарифма, используем формулу: . Далее замечаем, что . Тогда при имеем:
.
При :
.
Оба случая можно записать одной формулой:
,
где при нужно взять верхний знак ′+′; при – нижний знак ′–′.

Подставим в (П6) и выполним преобразования:
;
.
Переобозначим постоянную :
(П7) .

Теперь преобразуем экспоненту с помощью формулы Эйлера: , и выразим комплексную постоянную через действительную и мнимую части: . Подставляем в (П7):
.
Выполняем преобразования:

.
Тогда

.
Отделяем мнимую часть:

.

Автор: Олег Одинцов . Опубликовано: 20-07-2013 Изменено: 26-08-2020

Дифференциальные уравнения высших порядков: ЛОДУ, примеры решения.

Можно выделить 5 возможных метода для определения y0 — общего решения линейного однородного дифференциального уравнения n-ого порядка с постоянными коэффициентами:

1. В случае, когда все решения характеристического уравнения являются действительными и различными, значит, линейно независимые частные решения принимают вид:

,

а общее решение линейного однородного дифференциального уравнения n-ого порядка с постоянными коэффициентами записывают так:

.

Найти общее решение ЛОДУ 3-го порядка с постоянными коэффициентами:

.

Для начала записываем характеристическое уравнение и находим его корни, перед этим произведя разложение многочлена в левой части равенства на множители методом группировки:

Каждый из трех корней характеристического уравнения являются действительными и различными, значит, общее решение линейного однородного дифференциального уравнения 3-го порядка с постоянными коэффициентами принимает вид:

.

2. Когда каждое решение характеристического уравнения оказывается действительными и одинаковыми, т.е.,

,

значит, линейно независимые частные решения ЛОДУ n-ого порядка с постоянными коэффициентами принимают вид:

,

а общее решение линейного однородного дифференциального уравнения (ДУ) принимает вид:

Найти общее решение ДУ

.

Характеристическое уравнение этого линейного однородного дифференциального уравнения 4-го порядка выглядит так:

.

Обратившись к формуле бинома Ньютона, переписываем характеристическое уравнение как , из чего видим четырехкратный корень k0 = 2.

Т.о., общим решением заданного ЛОДУ с постоянными коэффициентами является:

.

3. Когда решениями характеристического уравнения ЛОДУ n-ого порядка с постоянными коэффициентами оказываются разные комплексно сопряженные пары , n=2m, тогда линейно независимые частные решения такого линейного однородного дифференциального уравнения принимает вид:

а общее решение записывается так:

Проинтегрировать ЛОДУ 4-го порядка с постоянными коэффициентами .

Характеристическое уравнение этого линейного однородного дифференциального уравнения:

.

Произведя некоторые несложные преобразования и группирования имеем:

Откуда находим 2 пары комплексно сопряженных корней характеристического уравнения и . Тогда, общим решением заданного ЛОДУ n-ого порядка с постоянными коэффициентами является:

4. Когда решениями характеристического уравнения оказываются совпадающие комплексно сопряженные пары , тогда линейно независимые частные решения ЛОДУ n-ого порядка с постоянными коэффициентами выглядят так:

,

а общим решением этого линейного однородного дифференциального уравнения является:

Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:

.

Первым шагом записываем характеристическое уравнение этого ЛОДУ с постоянными коэффициентами и определяем его корни:

Т.е., решением характеристического уравнения является двукратная комплексно сопряженная пара . Тогда общее решение заданного ЛОДУ с постоянными коэффициентами будет:

.

5. Могут возникнуть любые комбинации случаев, описанных выше, т.е., некоторые корни характеристического уравнения ЛОДУ n-ого порядка с постоянными коэффициентами являются действительными и различными, некоторые являются действительными и совпадающими, некоторые являются различными комплексно сопряженными парами и некоторые совпадающими комплексно сопряженными парами.

Найти общее решение ДУ

.

Характеристическое уравнение этого ЛОДУ с постоянными коэффициентами выглядит так:

.

Многочлен в левой части равенства можно разложить на множители. Из делителей свободного члена вычисляем двукратный корень k1=k2=2 и корень k3=-3. Далее, применяя схему Горнера, приходим к разложению:

.

Из квадратного уравнения находим оставшиеся корни .

Т.о., общее решение заданного ЛОДУ с постоянными коэффициентами выглядит как:

.

Однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Однородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами имеют вид

где p и q — действительные числа. Рассмотрим на примерах, как решаются однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Решение линейного однородного однородного дифференциального уравнения второго порядка зависит от корней характеристического уравнения. Характеристическое уравнение — это уравнение k²+pk+q=0.

1) Если корни характеристического уравнения — различные действительные числа:

то общее решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

2) Если корни характеристического уравнения — равные действительные числа

(например, при дискриминанте, равном нулю), то общее решение однородного дифференциального уравнения второго порядка есть

3) Если корни характеристического уравнения — комплексные числа

(например, при дискриминанте, равном отрицательному числу), то общее решение однородного дифференциального уравнения второго порядка записывается в виде

Примеры решения линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами

Найти общие решения однородных дифференциальных уравнений второго порядка:

Составляем характеристическое уравнение: k²-7k+12=0. Его дискриминант D=b²-4ac=1>0, поэтому корни — различные действительные числа.

Отсюда, общее решение этого однородного ДУ 2-го порядка есть

Составим и решим характеристическое уравнение:

Корни действительные и различные. Отсюда имеем общее решение данного однородного дифференциального уравнения:

В этом случае характеристическое уравнение

Корни различны и действительны. Поэтому общее решение однородного дифференциального уравнения 2-го порядка здесь

Поскольку корни действительны и равны, для этого дифференциального уравнения общее решение записываем как

Характеристическое уравнение здесь

Так как дискриминант — отрицательное число, корни характеристического уравнения — комплексные числа.

Общее решение этого однородного дифференциального уравнения второго порядка имеет вид

Отсюда находим общее решение данного диф. уравнения:

Примеры для самопроверки.

Найти общее решение однородных дифференциальных уравнений второго порядка с постоянными коэффициентами:


источники:

http://www.calc.ru/Differentsialnyye-Uravneniya-Vysshikh-Poryadkov-Lodu-Primery.html

http://www.matematika.uznateshe.ru/odnorodnye-differencialnye-uravneniya-vtorogo-poryadka-s-postoyannymi-koefficientami/