Решение интегральных уравнений вольтерра онлайн

Метод решения интегральных уравнений с помощью онлайн решателя

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Интегральное уравнение представляет собой уравнение, у которого неизвестная функция находится под знаком интеграла. Например:

\[x+\int _<2>^<3>\left(x+1\right)f\left(x\right)dx =x+t\]

Линейным интегральным уравнением считают интегральное уравнение, в которое функция с неизвестной входит линейно. Например:

\[\lambda \int K\left(x;\; s\right)\varphi \left(s\right)ds =f\left(x\right) \]

\[\varphi(x)\] — неизвестная функция

\[f(x), K(x;s)\]- заданные функции

Следующие уравнения относятся к нелинейным интегральным уравнения:

Интегральным уравнением Урысона имеет вид:

Уравнениt Гаммерштейна имеет вид:

Уравнением Ляпунова-Лихтенштейна имеет вид:

Нелинейное уравнение Вольтерры имеет вид:

\[F\left(x;\; s;\; \varphi \left(s\right)\right)\] — непрерывная по совокупности своих переменных.

Где можно решить интегральное уравнение?

Решить уравнение вы можете на нашем сайте pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Решения интегральных уравнений онлайн

В этом разделе мы рассмотрим типовые задачи по интегральным уравнениям с решениями. Интегральное уравнение содержит неизвестную функцию под знаком интеграла (по аналогии как дифференциальное — функцию под знаком дифференциала:)).

Выделяют два основных класса интегральных уравнений: уравнения Фредгольма I и II рода:

$$ (I) \quad \int_a^b K(x,s)u(s)ds = f(x),\\ (II) \quad u(x)=\int_a^b K(x,s)u(s)ds + f(x). $$

В случае переменного верхнего предела интегрирования получаем соответственно уравнение Вольтерра I и II рода:

$$ (I) \quad \int_a^x K(x,s)u(s)ds = f(x),\\ (II) \quad u(x)=\int_a^x K(x,s)u(s)ds + f(x). $$

Это линейные неоднородные уравнения (при $f(x)=0$ — однородные), иногда рассматриваются более общий случай с параметром $\lambda$ перед интегралом.

Ниже вы найдете примеры нахождения решений интегральных уравнений, собственных значений и функций, исследования ядра, применения интегральных уравнений для решения других задач.

Примеры решений интегральных уравнений

Задача 1. Пользуясь теоремой Гильберта-Шмидта, исследовать и решить интегральное уравнение 2-го рода $(E+\lambda A)x=y$ в гильбертовом пространстве $X$.

Задача 2. Найти собственные значения и собственные функции уравнения:

$$ y(x)=\lambda \int_0^1 (\cos 2\pi x +2x \sin 2\pi t +t \sin \pi x)y(t)dt. $$

Задача 3. Решить уравнение Вольтерры, сведя его к обыкновенному дифференциальному уравнению.

Задача 4. Решить или установить неразрешимость уравнений с вырожденным ядром.

Задача 5. Решить интегральное уравнение, сведя его предварительно к обыкновенному дифференциальному уравнению.

Задача 6. Найти резольвенту для интегрального уравнения Вольтерры со следующим ядром $K(x,t)=x^<1/3>t^<2/3>$.

Задача 7. Исследовать решения уравнения с вырожденным ядром при различных значениях параметра $\lambda$ (ограничиться случаем вещественных характеристических чисел).

$$ y(x)-\lambda \int_0^1 x y(t)dt = \sin 2\pi x. $$

Задача 8. Для симметричного ядра $$K(x,t) = \frac<1> <2>\sin |x-t| \quad (0 \le, x,t \le \pi)$$ найти характеристические числа и соответствующие им собственные функции, сводя интегральное уравнение к однородной краевой задаче для обыкновенного дифференциального уравнения.

Задача 9. Решить краевую задачу, используя функцию Грина

Задача 10. Применяя преобразование Лапласа, решить интегральное уравнение

Помощь с интегральными уравнениями

Если вам нужна помощь с решением задач и контрольных по интегральным уравнениям (и другим разделам математического и функционального анализа), обращайтесь в МатБюро. Стоимость подробной консультации от 200 рублей , оформление производится в Word, срок от 1 дня.

Онлайн Вычислитель интегралов

Запрос на вычисление интеграла к Wolfram|Alpha

Не только онлайн вычислитель интегралов

Wolfram|Alpha является замечательным инструментом для нахождения первообразных и вычисления определенных интегралов, двойных или тройных интегралов, а также несобственных интегралов. Более того, она строит графики, предлагает альтернативные формы ответов, а также другую полезную информацию для развития вашей математической интуиции.

Рекомендации по составлению запросов

Вводите запросы на обычном английском языке. Использование скобок, в случае необходимости, позволяет избежать неоднозначностей в запросе. Вот некоторые примеры, иллюстрирующие запросы для вычисления интеграла.

Access instant learning tools

Get immediate feedback and guidance with step-by-step solutions and Wolfram Problem Generator

Что такое интегралы?

Интегрирование является важным инструментом математического анализа, который вычисляет первообразную или дает площадь под графиком функции.

Неопределенный интеграл функции f(x), обозначаемый ∫f(x) dx, определяется как первообразная от f(x). Другими словами, производная от ∫f(x) dx равняется f(x). Поскольку производная от постоянной равна нулю, неопределенные интегралы определены с точностью до произвольной постоянной. Например, ∫sin(x) dx=−cos(x)+постоянная, потому что производная от −cos(x)+постоянная равняется sin(x). Определенный интеграл функции f(x) на отрезке от x=a до x=b, обозначаемый ∫baf(x) dx, определяется как суммарная площадь со знаком между кривой f(x) и осью абсцисс на отрезке от x=a до x=b.

Оба типа интегралов связаны друг с другом основной теоремой анализа. Она утверждает, что если функция f(x) является интегрируемой на отрезке [a,b] а F(x) является ее непрерывной первообразной, то ∫baf(x) dx=F(b)−F(a). Таким образом, ∫π0sin(x) dx=(−cos(π))−(−cos(0))=2. Иногда необходимо найти приближенное значение определенного интеграла. Распространенным методом вычисления приближения является размещение тонких прямоугольников под графиком функции и суммирование их площадей со знаком. Wolfram|Alpha может вычислять значения для широкого ряда интегралов.

Как Wolfram|Alpha вычисляет значения интегралов

Wolfram|Alpha находит значения не таким образом, как это делают люди. Она использует команду Integrate системы Mathematica, которая является результатом огромного объема математической и вычислительной научно-исследовательской работы. Команда Integrate вычисляет интегралы не так, как человек. Она использует эффективные и общие алгоритмы, часто включающие в себя сложные математические вычисления. Наиболее часто это происходит одним из двух способов. В первом — интеграл вычисляют в общем виде с неопределенными коэффициентами, результат дифференцируют и решают уравнения для этих коэффициентов так, чтобы получалось конкретное подынтегральное выражение. Даже для достаточно простых интегралов, генерируемые уравнения могут быть очень громоздкими, а для их решения могут требоваться сильные возможности системы Mathematica в алгебраических вычислениях. Другой подход, используемый системой Mathematica для вычисления интегралов, состоит в записи подынтегрального выражения в терминах обобщенных гипергеометрических функций и использовании ряда тождеств между функциями из этого весьма общего класса математических функций.

Несмотря на то, что эти эффективные алгоритмы дают Wolfram|Alpha возможность быстро находить значения интегралов и позволяют ей работать с широким рядом специальных функций, для неё также важно уметь вычислять интегралы так, как это делал бы человек. Поэтому Wolfram|Alpha имеет алгоритмы пошагового интегрирования. Они используют совершенно другую технику интегрирования, имитирующую способ решения интегралов, предпринимаемый людьми. Сюда входит интегрирование методом подстановки, интегрирование по частям, использование тригонометрических подстановок и метод Остроградского.


источники:

http://www.matburo.ru/ex_ma.php?p1=maintur

http://www.wolframalpha.com/calculators/integral-calculator/?e