Решение иррациональных уравнений 10 класс урок

План-конспект урока в 10-м классе «Способы решения иррациональных уравнений»
план-конспект урока по алгебре (10 класс) на тему

Способы решения иррациональных уравнений в 10-м классе.План-конспект

Скачать:

ВложениеРазмер
plan.docx51.88 КБ

Предварительный просмотр:

План-конспект урока в 10-м классе по теме:

« Способы решения иррациональных уравнений»

  • обобщение знаний учеников по данной теме;
  • демонстрация различных методов решения иррациональных уравнений;
  • показ возможности решения иррациональных уравнений на основе исследования;
  • формирование навыка самообразования, самоорганизации, умения анализировать, сравнивать, обобщать, делать выводы;
  • воспитание самостоятельности, умения выслушивать других и умения общаться в группе;
  • повышение интереса к предмету.

Форма проведения: семинарское занятие.

Оборудование: компьютер, мультимедийный проектор.

Сегодня мы поговорим об иррациональных уравнениях.

На доске приведены примеры уравнений иррациональных и не являющихся иррациональными.

Назовите те уравнения, которые являются иррациональными.

Дайте определения иррационального уравнения.

Ответы учеников.( иррациональными являются уравнения 1), 3), 4), 6). Определение иррационального уравнения:

Иррациональным называют уравнение, в котором переменная содержится под знаком радикала или под знаком возведения в дробную степень.)

На предыдущих уроках мы рассматривали решение иррациональных уравнений методом возведения обеих частей уравнения в степень корня (в основном в квадрат). При возведении частей уравнения в чётную степень мы получаем уравнение-следствие, решение которого приводит иногда к появлению посторонних корней. И тогда обязательной частью решения уравнения является проверка корней или нахождение области определения уравнения.

Однако при решении иррациональных уравнений не всегда следует сразу приступать к «слепому» применению известного алгоритма решения.

В заданиях Единого государственного экзамена имеется довольно много уравнений, при решении которых необходимо выбрать такой способ решения, который позволяет решить уравнения проще, быстрее. Поэтому необходимо знать и другие методы решения иррациональных уравнений, с некоторыми из них мы сегодня познакомимся.

При подготовке к уроку некоторые ученики получили листы-рекомендации, в которых рассматриваются основные приёмы решения иррациональных уравнений. Ребята ознакомились с предложенными решениями и подобрали свои уравнения, решить которые предстоит нам на уроке.

Решение иррационального уравнения методом возведения обеих частей уравнения в степень корня.

Решим данное уравнение традиционным способом – методом возведения обеих частей в квадрат. Слагаемое, содержащее квадратный корень оставим в левой части уравнения, а х перенесём в правую часть.

Возведём обе части уравнения в квадрат:

х + 4 = 4 – 28х + 49

Перенесём все члены уравнения в одну часть, получаем квадратное уравнение

Корни этого уравнения х = 5 и х = 2,25

Решая это уравнение мы возводили обе части уравнения в квадрат. При возведении обеих частей уравнения в любую четную степень получается уравнение, являющееся не равносильное данному, а являющееся следствием исходного, следовательно, при этом возможно появление посторонних корней. Поэтому необходимым условием решения является проверка корней.

Если х = 5, то = 10 — 7

х = 5 – корень уравнения

Если х = 2,25, то = 4,5 — 7

2,5 = — 2,5 – неверно

х = 2,25 посторонний корень

Предлагаю решить в классе уравнение:

2 ученик. Решение уравнения методом исследования области определения уравнения.

Пусть дано уравнение: — = –

Возведение обеих частей в квадрат приведёт нас к громоздким вычислениям и трате времени на экзамене.

Воспользуемся методом исследования области допустимых значений заданного уравнения.

Область допустимых значений данного уравнения определяется системой неравенств х=2

Данное уравнение определено только при х = 2.

Проверим, является ли число 2 корнем уравнения:

Попробуйте решить уравнение : = х — 2

3 ученик. Использование свойства монотонности функции.

Я хочу рассказать об уравнениях, решение которых основывается на свойстве монотонности функций. Существуют теоремы:

Теорема 1. Пусть уравнение имеет вид: f(x) = с, где f(x) –монотонно возрастающая (убывающая) функция, а с – число, входящее область значений функции f(x), тогда уравнение f(x) = с имеет единственный корень.

Теорема 2 . Пусть уравнение имеет вид f(x)= g(x), где функции f(x) и g(x) «встречно монотонны», т.е. f(x) возрастает, а g(x) убывает или наоборот, то такое уравнение имеет не более одного корня.

Если удается заметить эти свойства функций в уравнении или привести уравнение к таким видам, и при этом нетрудно угадать корень уравнения, то он и будет единственным решением данного уравнения.

Пример для изучения

Пусть дано уравнение: + = 6

ОДЗ уравнения: х+6 0; х

Функции = и = являются возрастающими на промежутке [- 6 ; , поэтому функция у = + так же является возрастающей на этом промежутке, и следовательно принимает любое значение, в том числе и 6, только один раз. Значит, уравнение имеет единственный корень.

Найдём этот корень подбором.

Проверкой убеждаемся, что число 2 является корнем данного уравнения.

Я предлагаю решить на уроке уравнение:

Это уравнение можно попытаться решить возведением обеих частей в квадрат (трижды!). Однако при этом получится уравнение четвертой степени.

Попробуйте использовать свойства монотонности функций, входящих в уравнение.

4 ученик Метод введения новой перменной.

Удобным средством решения иррациональных уравнений иногда является метод введения новой переменной, или «метод замены». Метод обычно применяется в случае, если в уравнении неоднократно встречается некоторое выражение, зависящее от неизвестной величины. Тогда имеет смысл обозначить это выражение какой-нибудь новой буквой и попытаться решить уравнение сначала относительно введенной неизвестной, а потом уже найти исходную неизвестную.

Пример для изучения:

ОДЗ уравнения: х х

Получаем уравнение t + =

Возведём обе части уравнения в 5-ю степень. При возведении обеих частей уравнения в нечётную степень получаем уравнение, равносильное данному, следовательно, не требуется проверка найденных корней. Получаем

В классе я предлагаю решить уравнение:

5 ученик Метод оценки частей уравнения .

Рассмотрим уравнение: + = 14х —

Запишем уравнение в виде + = -( +49)

Так как левая часть данного уравнения неотрицательная, а

правая — неположительная при любых допустимых значениях x ,

то равенство возможно только в том случае, когда они обе части уравнения

равны нулю. Легко убедиться, что это возможно только при х = 7.

Для решения в классе предлагаю уравнение:

III. Работа учеников в группах.

После прослушивания выступающих начинается работа учеников в группах по решению предложенных уравнений.

Учитель контролирует работу групп, даёт консультации.

IV . Домашнее задание № 1712 – 1719 (а) стр 253 задачника

По теме: методические разработки, презентации и конспекты

Учебно-методическое пособие «Решение уравнений». Часть 1: Решение иррациональных уравнений.

Электронное учебно-методическое пособие для уроков повторения в 11 классе по теме «Решение уравнений».

План – конспект урока алгебры в 11 классе по теме «Способы решения иррациональных уравнений»

Урок изучения нового материала в 11 математическом классе, имеющий целью рассмотреть различные способы решения иррациональных уравнений и научиться применять их в соответствии с заданным уравнением.

Урок по алгебре 11 класс » Решение иррациональных уравнений»

рассмотрены различные виды иррациональных уравнений и способы их решения.

План-конспект урока по алгебре в 10 классе на тему «Решение иррациональных уравнений и неравенств».

План-конспект урока по алгебре в 10 классе на тему «Решение иррациональных уравнений и неравенств».

Гипертекстовый конспект урока алгебры в 11 классе «Решение иррациональных уравнений. Технология разноуровневого обучения»

Конспект урока представлен в виде гипертекстового документа, что делает эффективной навигацию по содержанию. В материале содержится подробное описание урока по технологии разноуровневого обучения. Дет.

План-конспект занятия на тему «Некоторые методы решения иррациональных уравнений»

План-конспект занятия на тему «Некоторые методы решения иррациональных уравнений» Цель занятия: обобщить и систематизировать знания учащихся по данной теме.Задачи: Образовательн.

Конспект урока для 11 класса по теме «Иррациональные уравнения и приемы преобразования уравнений. Методы решения иррациональных уравнений»

Конспект урока для 11 класса пр теме «Иррациональные уравнения и приемы преобразования уравнений. Методы решения иррациональных уравнений&quot.

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №20. Иррациональные уравнения и неравенства

Перечень вопросов, рассматриваемых в теме

1) понятие иррационального уравнения;

2) понятие иррационального неравенства;

3) виды и методы решения простейших иррациональных уравнений;

4) методы решения иррациональных неравенств.

Глоссарий по теме

Иррациональное уравнение – это уравнения, в которых неизвестное находится под знаком корня.

Свойство: при возведении обеих частей уравнения в натуральную степень получается уравнение – следствие данного.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Иррациональное уравнение – это уравнения, в которых неизвестное находится под знаком корня.

Свойство: при возведении обеих частей уравнения в натуральную степень получается уравнение – следствие данного.

Рассмотрим виды иррациональных уравнений

В этом случае мы можем воспользоваться определением квадратного корня.

Из него следует, что а≥0, тогда

Для нашего случая получим

или

Мы знаем, что сумма положительных чисел равна нулю тогда и только тогда, когда каждое из слагаемых равно нулю.
Т.е.

По определению квадратного корня f(x) > 0. Таким образом, чтобы найти такие значения неизвестной, при которых выполняются следующие условия:

следовательно, решений нет

Ответ: решений нет

Определение. Неравенство, содержащие переменную под знаком корня, называется иррациональным.

Иррациональное неравенство, как правило, сводится к равносильной системе (или совокупности систем) неравенств.

Разбор решения заданий тренировочного модуля

Решим уравнение:

Возведем в квадрат обе части уравнения, получим:

, которое не будет равносильно исходному уравнению, потому что у этого уравнения два корня , а у первоначального уравнения только один корень х=4.

Подчеркните корни данного уравнения

Решим данное уравнение.

Получаем три корня из последнего уравнения: -1;0;1

Решите уравнение:

Рассмотрим область определения функций:

х=-2, но -2 не входит в область определения функций, следовательно, решений нет.

Конспект урока по алгебре и началам анализа в 10 классе по теме: «Решение иррациональных уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Конспект урока по алгебре и началам анализа в 10 классе

Тема урока: «Иррациональные уравнения»

Оборудование проектор, слайды по теме урока, доска на три человека, карточки-раздаточный материал.

обучающая — обобщить и систематизировать знания учащихся по применению различных способов решения иррациональных уравнений с одним корнем или с двумя.

развивающая — развить нестандартное мышление через умение находить рациональные пути решения, научить переключаться с одного способа на другой.

воспитательная — воспитать культуру соблюдения всех этапов аргументации при решении уравнений, терпение, упорство в достижении цели.

1. Введение в урок, организационный этап.

Здравствуйте ребята! Тема нашего урока: «Способы решения иррациональных уравнений».

Цель урока состоит в том, чтобы обобщить и систематизировать методы решения иррациональных уравнений; познакомить вас с новым типом иррациональных уравнений, состоящих из двух радикалов; на этом уроке мы попытаемся научиться определять оптимальный способ решения того или иного иррационального уравнения.

2. Устный счет, проверка домашнего задания.

Начнем с обзора домашнего задания. Откройте тетради с домашней работой. На дом вам было задано решить уравнения различными способами: методом равносильных переходов и методом проверки. Кто покажет свое решение на доске? Пожалуйста. ( Выходят два ученика и приступают к оформлению решений уравнений, решенных различными способами ).

А остальные включаются в устный счет ( работа с классом )

1) Имеет ли уравнение корни

Ответ: Нет. Почему? (Так как правая и левая части принимают разные значения).

2) Решите уравнение

Ответ :

3) Решите уравнение

Ответ: Нет решений. Поясните. (Так как корень квадратный ни при каких значениях х не может принимать значение равное – 2.)

4) Решите уравнение

Ответ: Нет решений. Поясните. (Так как сумма двух неотрицательных выражений не может принимать отрицательное значение).

5) Решите уравнение

Ответ : х=3. Поясните ход решения. (Так как сумма двух неотрицательных выражений равна нулю, если только оба слагаемых одновременно равны нулю).

Итак, как вы уже заметили, уравнение может иметь единственный корень или несколько корней, а может совсем не иметь решений. Вы так же поняли, что, иногда, только по виду уравнения можно сразу определить количество его корней. В большинстве же случаев, которые вы изучали уже ранее, только доведя решение задачи до конца, можно однозначно ответить на этот вопрос.

Напомню, что решениями или корнями уравнения называют те значения переменной, при подстановке которых в него, обе части уравнения одновременно принимают одно и тоже значение. Обратите внимание, что к решениям уравнения используется устоявшийся термин «корень». И сегодня мы будем рассматривать иррациональные уравнения, содержащие только квадратные корни.

Наши отвечающие у доски уже готовы, давайте посмотрим на их решения.

Уравнение на доске 1-го ученика. Решить: .

Решение:

. Ответ: .

Учитель: Ответьте, ребята, почему этот пример не был проверен способом подстановки?

Ученик 1: В таком способе отбора корней необходимо вычислить значения обеих частей уравнения и убедиться, что они принимают равные значения. Очевидно, что достаточно трудно вычислить значение левой части уравнения при .

Учитель : Да, но не надо забывать и достоинства способа проверки корней уравнения с помощью их подстановки в него. Ведь этим способом мы заодно проверяем, не допустили ли мы арифметической ошибки? Давайте разберем другое уравнение, приведенное на доске и проверенное методом подстановки.

Уравнение на доске 2-го ученика. Решить: .

Решение:

.

Проверка :

равенство неверное.

— не является корнем исходного уравнения.

Ответ: корней нет.

Учитель: Скажите, обязательно ли было записывать проверку в решении, если вы сделали ее устно?

Ученик 2: Здесь очень важно было доказать, что данное уравнение решений не имеет, поэтому проверка является доказательством того, что найденный корень как раз посторонний, поэтому эту часть решений приводят обязательно.

Учитель: А если бы этот корень при подстановке подходил и превращал уравнение в верное числовое равенство, надо было бы выписывать в решении проверку и почему? Кто из класса ответит?

Ученик 3: Конечно надо, так как при возведении в квадрат мы переходили к уравнению, которое может иметь посторонние для исходного уравнения корни. Надо проверить, какие именно корни являются решениями исходного иррационального уравнения.

Учитель: Молодцы все, кто был у доски и активно участвовал в обсуждении и устном счете!

3. Сравнительный анализ аналитических способов решений иррационального уравнения имеющего стандартный вид.

Учитель: Давайте теперь перейдем к обзору многочисленных способов решения иррациональных уравнений. Для начала вспомним, какие именно уравнения называются иррациональными?

Ученик: Уравнения, содержащие переменную под знаком корня.

Учитель: Верно, иногда еще говорят, что это уравнения, содержащие знак радикала, и это тоже будет правильно, так как знак самого корня произошел от латинской буквы r . Дело в том, что первыми «нерациональными» числами считались числа, содержащие корень, «который не извлекался». Например, Поэтому и уравнения, содержащие под корнем переменную, стали называть иррациональными. Однако в конце урока я напомню вам еще об одном «важном» для математиков иррациональном числе, которое вы прекрасно знаете. Однако, «иррациональным» оно стало считаться намного позже чисел, указанных выше, то есть содержащих радикал.

Итак, давайте обобщим наблюдения по использованию различных способов отбора корней при возведении в квадрат стандартного иррационального уравнения, выделим их достоинства и недостатки.

1) если проверять корни « подстановкой» их в исходное уравнение, то в случае равенства левой и правой части мы убеждаемся, что в решении мы не допускали арифметических ошибок. Помните, как именно для этого производилась проверка при решении уравнений в младших классах?

Недостаток способа решения «подстановкой» проявляется в случае, если корни «неудобные» с точки зрения арифметики.

2) если найденные корни дробные, многозначные или иррациональные, то, как вы уже знаете, можно проверить только неотрицательность правой части стандартного иррационального уравнения. В этом и заключается достоинство метода «равносильного перехода».

3) напомню теперь третий способ, который мы сегодня не приводили на примерах. Если при возведении в квадрат получаются трудоемкие упрощения и вычисления, тогда обратите внимание на решение системы условий, при которых одновременно и подкоренное выражение и правая часть, которой этот корень равен, являются неотрицательными. Посмотрите, пожалуйста, на следующий слайд:

Решить уравнение .

Ответ: решений нет.

Учитель: Кто прокомментирует решение?

Ученик: Так как корень уравнения при подстановке в уравнение превращает его в верное числовое равенство, то, прежде всего, этот корень должен удовлетворять выписанной системе условий. Достаточно заметить, что эта система решений не имеет, а это значит, что и само уравнение не имеет корней.

Учитель: Давайте этот метод назовем «метод пристального взгляда», так как если вовремя обратить на такую систему внимание, это значительно сэкономит время при решении такого уравнения.

4. Сравнительный анализ различных способов решения уравнений, содержащих один корень.

Учитель: Ранее мы обсудили различные способы отбора корней стандартного иррационального уравнения, повторив их дома. Давайте теперь решим одно уравнение различными способами в тетрадях и на доске. Открыли тетради, записали число и задание. Решить уравнение . Каждый ряд решает это уравнение своим способом: 1 ряд – возведением в квадрат, 2 ряд – введением новой переменной, 3 ряд – графическим способом. По одному ученику из каждого ряда выполнят эту же работу у доски. Кто к доске?

(Три ученика одновременно вызываются к доске)

(После пяти минут работы, происходит анализ решений со всем классом)

1-й способ решения, «Возведением в квадрат».

Решить уравнение.

Решение :

Отсюда, Ответ: 4.

Учитель: Вопрос ряду 2 и 3. Скажите, а почему важно было сначала уединить корень перед возведением в квадрат?

Ученик: Если уединить корень мы сразу от него избавляемся, для чего и возводим его в квадрат.

Учитель: Правильно. Давайте теперь посмотрим, как можно свести уравнение с корнем к квадратному методом «подстановки».

2-й способ решения. «Введения новой переменной».

Решить уравнение .

Решение: Пусть , где , тогда .

. Отсюда, ; . Ответ: 4.

Учитель: Вопрос ряду 1 и 3. А если не выписывали бы условие на новую переменную, как тогда нужно оформлять решение?

Ученик: Тогда бы при возвращении к х нужно было бы записать, что уравнение не имеет решений.

Учитель: Правильно. Посмотрим теперь другое решение этого же уравнения.

3-й способ решения. «Графический».

Решить уравнение.

Решение:

Проверка : подставим в систему — система верна.

Из рисунка 1 видно, что найденная точка их пересечения единственная, то есть единственный корень исходного уравнения.

Учитель : Вопрос 1 и 2 ряду. Скажите, а почему «из чертежа очевидно», что будет только одна точка пересечения?

Ученик: Обе эти функции монотонно возрастают, причем прямая быстрее увеличивает свои значения, чем функция . Это значит, что график последней функции никогда не догонит прямую после того, как они пересеклись при .

Учитель: Тем более, что при прямая лежала ниже графика .

Все молодцы! Мы рассмотрели различные способы решения уравнений с одним корнем. Как видите графический способ нагляднее, но трудный в угадывании корней, а так же, в обосновании их количества. В этом он и проигрывает любому аналитическому способу.

Давайте теперь проанализируем приведенные на слайде три решения одного иррационального уравнения и выберем самое красивое из них.

Слайд 1. Решить уравнение

Решение. «Возведение в квадрат » перейдем к системе:

Так как первое уравнение имеет D = — 3

Ответ: нет решений.

Слайд 2 . Решить уравнение

Решение: «Пристальным взглядом» можно заметить, что корень уравнения должен удовлетворять системе условий:

Так как система не имеет решений ни при одном значении x , то корней нет.

Ответ: нет решений.

Слайд 3 . Решить уравнение

Решение: «Графический способ» применим к системе:

Так как при функция монотонно возрастает, а монотонно убывает. С учетом, что при прямая лежит ниже нуля, то графики рассматриваемых функций не пересекутся.

Ответ: нет решений.

Учитель: Каким же способом рациональнее было решать данное уравнение?

Класс: Вторым способом.

5 . Индивидуальная работа. А теперь попробуйте решить уравнения методом введения новой переменной. Решаем уравнение, поднимаем руки и сверяем свои решения с приведенным на слайде.

6 . Применение изученных способов к решению уравнений с двумя радикалами.

Учитель: Давайте теперь попробуем решить уравнение с двумя квадратными корнями различными способами. Все пишут в тетрадях, я у доски.

Решить уравнение.

Решение 1: Перед тем, как возвести обе части уравнения в квадрат часто целесообразно сначала уединить корень, как это уже мы делали ранее.

Методом равносильных переходов решить полученное уравнение достаточно тяжело, а значит не рационально. Возведем в квадрат левую и правую часть уравнения и затем проверим корень подстановкой.

Проверка. Подставим в уравнение; — верное равенство, то есть 2 является решением исходного уравнения.

Графически представить части уравнения, даже переносом радикалов в разные стороны достаточно сложно, хотя и можно построить с помощью переносов осей графики частей уравнения Но из этого все равно следует, что корень придется угадывать и проверять, а его единственность обосновывать монотонностью функций. В этом случае есть способ попроще, но, по сути, он аналогичен графическому.

Решение 2: Так как каждое из слагаемых левой части уравнения монотонно возрастает при увеличении переменной, то и их сумма монотонно возрастает, а, значит, любое свое значение правая часть уравнения принимает только при одном значении . Подбором можно проверить, что при левая часть равна пяти, следовательно, других таких значений х не существует. Ответ: 2.

Учитель: Какой из способов решения наиболее оптимален?

Класс: Второй способ.

Учитель: Еще раз отметим, что метод возведения в квадрат значительно упрощается во многих случаях, если уединить корень. Но этот аналитический способ универсальный, так как графический способ «монотонности левой части»» не всегда применим. Тем более если корень попросту не угадывается. А доказать, что его не существует вообще не возможно. Например, кто может сказать, почему последний способ не применим к уравнению , в котором надо найти все целые решения?

Ученик: Так как один корень левой части является монотонно возрастающей функцией, а второй — убывающей, то их сумма может не быть монотонной при любых х . А значит и значение равное 1 может принимать два раза.

Учитель: Остается только уединять один из корней, возводить в квадрат и выполнить проверку. Но это я предлагаю вам сделать дома. Скажите лучше, а нельзя ли здесь «пристально посмотреть» на данное уравнение. Ведь если вернуться к предыдущему «графическому» способу, в случае, если бы мы не заметили, что правая часть не монотонная, то подбор корня мы бы осуществляли, ориентируясь на область определения функции, то есть левой части уравнения. Кто теперь решит эту задачу?

Ученик: Найдем область определения левой части, решив систему . Так как по условию задачи надо найти только целые корни уравнения, то остается проверить все три целых числа, найденной области определения, числа: 2, 3, 4. Подстановкой не трудно проверить, что только является корнем исходного уравнения.

Учитель: Молодец! Думаю, что, прорешав это задание дома возведением в квадрат, вы еще больше убедитесь в красоте только что разобранного решения.

7. Самостоятельная работа. Давайте посмотрим, как быстро вы теперь решите уравнения, не возводя их в квадрат.

Выписывайте ответы себе в тетрадку, а листочки с работой сдаете мне.

У кого 3 правильных ответа? Это 5. Вы получаете право сегодня называться УМНИКОМ.

2 ответа? – 4. Почти умник.

1 ответ? Хоть и тройка, но тоже не плохо.

8. Задание на дом. Итог урока.

— Дома вы решите приведенные на розданных вам листиках уравнения различными способами решения. На следующий урок ответите, каким именно способом рациональнее всего было решать каждое.

14 марта — Всемирный день числа . Именно это число, равное отношению длины окружности к ее диаметру вы прекрасно знаете из геометрии. Как раз оно так же является иррациональным, хотя и не содержит в своей записи корень.


источники:

http://resh.edu.ru/subject/lesson/5569/conspect/

http://infourok.ru/konspekt-uroka-po-algebre-i-nachalam-analiza-v-klasse-po-teme-reshenie-irracionalnih-uravneniy-2025649.html