Решение иррациональных уравнений математика 11 класс

Решение иррациональных уравнений. Математика. 11-й класс

Разделы: Математика

Класс: 11

Цели урока:

  • ввести понятие иррациональных уравнений и показать способы их решения;
  • создать условия контроля усвоения знаний и умений.
  • совершенствовать умения применять накопленные знания в измененной ситуации;
  • развивать умение самостоятельно работать, контролировать и оценивать результаты своих действий;
  • развивать творческий потенциал, мышление, познавательный интерес.
  • содействовать повышению уровня математической культуры;
  • воспитывать ответственное отношение к учебному труду;
  • способствовать воспитанию коммуникабельности;
  • тренировка памяти.

Тип урока: урок изучения и закрепления нового материала.

  • тесты по теме;
  • карточки для разноуровневой самостоятельной работы.
  • презентация

Методы обучения: дифференцированный, репродуктивный, частично – поисковый. Тестовая проверка уровня знаний, самопроверка.

Формы организации труда: индивидуальная, фронтальная, групповая.

План урока:

  1. Оргмомент.
  2. Устные упражнения по повторению пройденного материала.
  3. Изучение новой темы.
  4. Закрепление.
  5. Работа учащихся с тестами.
  6. Самооценка.
  7. Проверочная работа.
  8. Домашнее задание.
  9. Итог урока.

ХОД УРОКА.

I. Организационный момент.

Сообщение темы и целей урока, краткий план урока. Слайд 1.

II. Актуализация опорных знаний.

Цель: приведение в систему знаний видов уравнений.

Задача: определить тип каждого из перечисленных уравнений, вспомнить алгоритм решения.

  1. 5х –=+ 2х;
  2. cos+ 1 = 0,5;
  3. 0;
  4. 2х +sin=3;
  5. ;
  6. ;
  7. ;
  8. .

III. Изучение нового материала.

Цель: ввести понятие иррациональных уравнений и показать способы их решений.

Последнее уравнение называется иррациональным, и на этом уроке вы познакомитесь различными методами решения таких уравнений. Тема эта актуальна, так как иррациональные уравнения традиционно встречаются в заданиях ЕГЭ, с их помощью легко диагностируются знания выпускников по таким понятиям, как равносильность уравнений и ОДЗ.

Итак, уравнения, в которых переменная содержится под знаком корня или дробной степени, называются иррациональными.

Задание: какие из следующих уравнений являются иррациональными:

  1. ;
  2. ;
  3. ;
  4. = 1,56 + x;
  5. .

  1. Все корни четной степени, входящие в уравнение, являются арифметическими, т.е. если подкоренное выражение отрицательно, то корень лишен смысла; если подкоренное выражение равно нулю, то и корень равен нулю; если подкоренное выражение положительно, то значение корня положительно.
  2. Все корни нечетной степени, входящие в уравнение, определены при любом действительном значении подкоренного выражения. При этом знак корня совпадает со знаком подкоренного выражения.

Напомним, что уравнение f 2n (x)=g 2n (x) является следствием уравнения f(x)=g(x). То есть возведение в четную степень обеих частей уравнения может привести к появлению посторонних корней. Чтобы избежать этого, необходимо либо проверить подстановкой, удовлетворяют ли полученные корни исходному уравнению, либо ограничить ОДЗ значениями переменной, при которых обе части уравнения одного знака (неположительны или неотрицательны одновременно).

Основные способы решения иррациональных уравнений:

1. Решение без равносильных преобразований с проверкой.

2. Использование равносильных преобразований. Слайд 4.

  1. или
  2. .
  3. .

Рассмотрим способы решения иррациональных уравнений.

1. Решение уравнения = 1 – х методом возведения в квадрат обеих частей уравнения.
() = (1 – х);

x 2 – 5x = 0.
Решив это уравнение, находим корни .

Проверка: если x = 0, то , 1 = 1 – верно;
если х = 5, то , 4 = 4 – неверно.
Ответ: 0.

2. Решение уравнения = 1 – х методом равносильных переходов:


Ответ: 0.

3. Решение уравнения = 1 – х графическим способом. Слайд 5.
В одной системе координат построим графики функций f(x) = и g(x) = 1 – х


Ответ: 0.

4. Решение уравнения = 1 – х с использованием теоремы о корне.

Так как функция f(x) = возрастает при , а функция g(x) = 1 – х убывает на множестве R, то по теореме о корне уравнение f(x) =g(x) имеет не более одного корня. Подбором находим, что x = 0.

IV. Закрепление.

Решить уравнение: 3=7.

Найдем ОДЗ: .

Преобразуем уравнение: 3=+7.

Так как обе части уравнения неотрицательны, то можно возвести в квадрат:

9(x+3) = x – 2 + 49 + 14, преобразуем уравнение, уединим радикал в правой части: 4x– 10 = 7. Чтобы обе части уравнения были неотрицательны, наложим ограничение: 4x – 100, т.е. x2,5, с учетом ОДЗ: x2,5. Возведем обе части уравнения в квадрат и приведем подобные: 16x2 – 129x + 198=0. Из его корней x1= 6 и x2 = условию x2,5 удовлетворяет х = 6.

V. Тренировочная работа по заданиям обязательного уровня.

Цель: формирование умений решать иррациональные уравнения способом возведения в степень по алгоритму. Развитие коммуникативной компетентности школьников.

Работа в группах по алгоритму с консультацией учителя. Слайд 6.

Алгоритм решения уравнений вида
n – четноеn – нечетное
1)уединить корень;
2) возвести обе части уравнения в степень n;
3)решить полученное уравнение;
4) выполнить проверку корней путем подстановки в исходное уравнение;
5)записать ответ.
1)уединить корень;
2)возвести обе части уравнения в степень n;
3)решить полученное уравнение;
4)записать ответ.

Вариант 1

А1. Решите уравнение

1) 2; 2) 4; 3) 5; 4) 4,5

А2. Найдите сумму корней уравнения .

А3. Какому из промежутков принадлежит корень уравнения

Вариант 2

А1. Укажите промежуток, которому принадлежат корни уравнения .

1) ( 2; 0); 2) ( 0; 2); 3) (2; 4); 4) (3; 6)

А2. Укажите промежуток, которому принадлежат нули функции у = .

А3. Укажите промежуток, которому принадлежат корни уравнения .

Вариант 3.

А1. Найдите сумму корней уравнения .

А2. Укажите промежуток, которому принадлежат корни уравнения .

А3. Найдите среднее арифметическое корней уравнения .

Вариант 4

А1. Укажите промежуток, которому не принадлежат нули функции .

1) ( 2; 10]; 2) [1; 10); 3) [0; 1]; 4) (1; 3)

А2. Найдите произведение корней уравнения .

А3. Укажите промежуток, которому принадлежат все нули функции .

1) [4; 9]; 2) (4; 9]; 3) [4; 9); 4) (9; 12)

Алгебра

План урока:

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

Открытый урок по дисциплине «Математика» на тему: «Иррациональные уравнения»
план-конспект занятия по алгебре (11 класс) на тему

Работа посвящается разработке методики проведения уроков с использованием информационных и коммуникационных технологий (ИКТ). На сегодняшний день одним из перспективных и важных является комплексный подход к использованию средств ИКТ. Информационные и коммуникационные технологии неизмеримо расширяют возможности организации и управления учебной деятельностью и позволяют реализовать огромный потенциал перспективных методических разработок, найденных в рамках традиционного обучения, которые в силу определенных объективных причин не смогли бы дать нам должного эффекта.

Методы изложения нового материала и методы освоения материала студентами, предложенные в разработке, разнообразны: это и объяснительно-иллюстративный с элементами опорного конспектирования; работа в парах. Использован также способ обучения в сотрудничестве.

Скачать:

ВложениеРазмер
Конспект урока по теме: «Иррациональные уравнения»53.23 КБ
Презентация к уроку по теме: «Иррациональные уравнения»517.8 КБ
Самостоятельная работа28.1 КБ
Лист самоконтроля для студентов14.77 КБ

Предварительный просмотр:

Открытый урок по математике для студентов 1 курса СПО

преподаватель Мерикова Любовь Анатольевна

Тема занятия: «Иррациональные уравнения».

Вид занятия: урок.

Тип занятия: урок формирования новых знаний.

Научить решать иррациональные уравнения, стимулировать студентов к овладению рациональными приёмами и методами решения иррациональных уравнений.

Формировать культуру общения: умение выслушивать других; формировать навыки самоконтроля и контроля полученных знаний и навыков, чувство ответственности за выполненную работу, дисциплинированность.

Развивать мыслительную деятельность студентов: умение анализировать, обобщать, классифицировать.

Показать методику проведения урока формирования новых знаний с применением ИКТ.

Методы обучения: объяснение преподавателя, самостоятельная работа студентов с последующей самопроверкой, презентация.

Обеспечивающие: физика, математика (базовый уровень).

Оснащение занятия: компьютер и проектор, презентация для сопровождения урока, раздаточный материал: карточки с текстом заданий самостоятельной работы, листы самоконтроля ответов студентов, карточки с домашним заданием.

1. Организационный момент:

Приветствие студентов. Осведомление об отсутствующих.

(Демонстрация презентации 1-й слайд, появление только эпиграфа к занятию).

— Занятие сегодня мне хотелось бы начать словами из книги «Прелюдия к математике», которую написал известный английский преподаватель Уолтер Уорик Сойер.

2. Актуализация опорных знаний (метод: фронтальный опрос).

— Прежде чем приступить к изучению новой темы, вспомним ранее изученные сведения.

Вопросы для повторения:

1) — Дайте определение уравнения с одной переменной.

Ответ: Равенство с одной переменной, в котором нужно найти те значения переменной, при которых получается верное числовое равенство.

2) — Что называется корнем уравнения?

Ответ: Корнем или решением уравнения называется значение переменной, при подстановке которого в уравнение получается верное числовое равенство.

3) – Какие уравнения называются равносильными?

Ответ: Уравнения, имеющие одни и те же корни, называются равносильными.

4) – Какие равносильные преобразования можно выполнять при решении уравнений?

Ответ: — перенос слагаемых из одной части равенства в другую с противоположным знаком;

— умножение обеих частей равенства на одно и то же отличное от нуля число;
— дробь равна нулю, тогда и только тогда когда числитель равен нулю, а знаменатель не равен нулю.

У каждого из вас на столе лежит справочный материал, в котором содержатся: таблица квадратов чисел; формулы сокращенного умножения; формулы нахождения корней полного квадратного уравнения, вы можете пользоваться этими материалами при решении уравнений.

3. Мотивация учебной деятельности.

В результате работы на сегодняшнем занятии, мы познакомимся с понятием иррационального уравнения, рассмотрим некоторые способы решения различных иррациональных уравнений, сначала мы будем решать уравнения совместно, затем выполним самостоятельную работу, вы обменяетесь с соседом по парте работами и выполните проверку работы, результаты будем записывать в лист самооценки.

4. Запись темы и плана занятия:
(Демонстрация презентации: 1-й слайд — появление темы занятия).

— Откройте свои тетради и запишите тему занятия: «Иррациональные уравнении».

(Демонстрация презентации: 2-й слайд — план занятия).

— Запишите план занятия.

План занятия:
1) Понятие иррациональных уравнений.

2) Методы решения иррациональных уравнений.

3) Решение иррациональных уравнений.
4) Самостоятельная работа.

5. Изучение нового материала.

1) Понятие иррациональных уравнений: (Демонстрация презентации: 3-й слайд ).

Определение. Иррациональным уравнением называют уравнение, в котором неизвестная величина содержится под знаком радикала.

2) Методы решения иррациональных уравнений:

(Демонстрация презентации: 4-й слайд ).

Преподаватель: Решение иррационального уравнения основано на преобразовании его к рациональному уравнению, которое достигается возведением обеих частей в одну и ту же степень (иногда несколько раз). При этом если обе части уравнения возвести в нечётную степень, то получим уравнение, равносильное данному. Запишите это в конспект.

(Демонстрация презентации: 5-й слайд ).

Преподаватель: В процессе решения заданное уравнение заменяют более простым, при этом используя следующие правила преобразований уравнения в равносильное:
— перенос слагаемых из одной части равенства в другую с противоположным знаком;
— обе части уравнения можно умножить или разделить на одно и то же, отличное от нуля число;
— уравнение можно заменить равносильной системой или решить уравнение f(x)=0, а затем отбросить те корни, которые обращают в 0 знаменатель.

(Демонстрация презентации: 6-й слайд , запись информации на слайде в конспект).

Преподаватель: При возведении обеих частей иррационального уравнения в чётную степень получается уравнение, являющееся следствием исходного.

Уравнению – следствию удовлетворяют все корни исходного уравнения, но могут появиться и корни, которые не являются корнями исходного уравнения, так называемые посторонние корни. Запишите это в конспект.

(Демонстрация презентации: 7-й слайд , запись в конспект).

Преподаватель: К появлению посторонних корней могут привести следующие преобразования:
— возведение в квадрат (или в чётную степень) обеих частей уравнения;

— умножение обеих частей уравнения на алгебраическое выражение, содержащее переменную.

(Демонстрация презентации: 8-й слайд , запись в конспект).

Преподаватель: Рассмотрим правила равносильного перехода для простейших иррациональных уравнений. То есть те преобразования при выполнении, которых проверка не требуется.

1) если (область допустимых значений находить не надо).

2) если или любой другой корень чётной степени равен отрицательному числу, то ( x принадлежит пустому множеству, т.е. решений нет).

3) если квадратный корень равен нулю, то и подкоренное выражение равно нулю:
.

Уравнения вида (т.е. n – чётное) решаются по аналогичным правилам.

4) если n – чётное, то .

Таким образом: (условие f(x) ≥ 0 в этом случае не рассматривается, т.к. проверяется автоматически потому что правая часть уравнения системы неотрицательна).

2) Методы решения иррациональных уравнений;

3) Решение иррациональных уравнений.
(Демонстрация презентации 9-й слайд , запись в конспект)

Привлечение к решению уравнения студентов:
-Что нужно сделать чтобы решить это уравнение?
Ответ: обе части уравнения возвести в квадрат.

Подставив полученные корни в исходное уравнение, видим, что они удовлетворяют ему.

В данном случае. проверку делать было не обязательно, почему?
— Потому что в правой части равенства положительное число.

(Демонстрация презентации 10-й слайд , запись в конспект)

По определению арифметического квадратного корня: – это неотрицательное число, квадрат которого равен a .

Ответ: решений нет.

(Демонстрация презентации 11-й слайд , запись в конспект)

Преподаватель: Рассмотрим решение уравнений вида:

(Студент решает у доски, затем проверка с помощью слайда, способы могут не совпадать).

В результате проверки получаем, что число -7 не является корнем данного уравнения.

При такой записи проверка не нужна.

(Демонстрация презентации 12-й слайд , запись в конспект)

Преподаватель: Рассмотрим решение уравнения, содержащего более одного радикала. Уравнение вида .

Из двух систем решают ту, которая решается проще.

(Демонстрация презентации 13-й слайд , запись в конспект)

Иногда для решения уравнения достаточно найти область допустимых значений (ОДЗ). То есть все значения переменной, при которых уравнение имеет смысл.

Ответ: решений нет.

(Демонстрация презентации 14-й слайд , запись в конспект)

Запишите в конспекты рекомендации для линейных комбинаций двух и более радикалов.

Если уравнение содержит два и более радикала, то необходимо придерживаться следующих правил:
1. указать область допустимых значений уравнения;
2. распределить радикалы по обеим частям, чтобы обе части уравнения стали неотрицательными;
3. только после этого возводить в квадрат левую и правую части уравнения.

(Демонстрация презентации 15-й слайд , запись в конспект)

(Студент у доски решает, затем проверяем с помощью слайда).

Возведем в квадрат ещё раз обе части уравнения, получим:
,

Выполнив проверку, получим, что корнем уравнения является число 5.

Или можно воспользоваться ещё одним правилом равносильного перехода, и тогда проверка не нужна:
.

(Демонстрация презентации 16-й слайд , запись в конспект)

Пример 7 (Решение с привлечением студентов).

(Демонстрация презентации 17-й слайд , запись в конспект)

Решение иррациональных уравнений с использованием способа замены переменных.

Тогда решаем уравнение: ⇔ так как , то возвращаемся к замене:

Проверка показывает, что оба числа являются корнями уравнения.

(Демонстрация презентации 18-й слайд , запись в конспект)

Преподаватель: Рассмотрим решение уравнений вида:

Произведение равно 0, если хотя бы один из множителей равен 0, а второй при этом имеет смысл:
.

(Демонстрация презентации 19-й слайд , запись в конспект)

Преподаватель: Если у нас радикал имеет нечётную степень здесь всё просто, возвести обе части уравнения в эту степень и решить получившееся уравнение.

Пример 10 (Студент у доски решает, затем выполняем проверку с помощью слайда).

(Демонстрация презентации 20-й слайд , запись в конспект)

Преподаватель: И ещё один способ решения иррационального уравнения – графический.

Графически решить уравнение

Решение. Построим в одной системе координат графики функций . Графики пересекаются в одной точке при .

Преподаватель: Методов решения иррациональных уравнений очень много и рассмотреть их подробно в рамках одного занятия нет возможности, для заинтересовавшихся студентов я могу рассказать о других методах во внеурочное время.

6. Закрепление нового материала.

4) Самостоятельная работа.

А теперь, проверим уровень понимания материала, приготовьтесь к выполнению теста. Результаты теста записывайте в листы самопроверки, которые у вас лежат на столе, на выполнение теста у вас 5 минут. Выполнять тест старайтесь самостоятельно, только в этом случае можно определить, как вы поняли материал занятия. (Тест на слайде 21 , текст теста приложение 4).

(Демонстрация презентации 22-й слайд)

Проверка тестового задания.

— Проверяем правильность рассуждений, внимание, посмотрите на слайд и сверьте получившиеся у вас результаты с правильными.

— Кто ответил на все вопросы правильно? Поднимите руки, пожалуйста.

— Кто не ответил ни на один вопрос? Есть у нас такие? (Если да, то поручить студентам, хорошо ориентирующимся в теме объяснить этот материал ещё раз своим товарищам).

— Выполним самостоятельную работу, проверять её будем в парах
(Приложение 2).

23-й слайд. – Обменяйтесь тетрадями с соседом по парте и выполните проверку, а теперь сверьте получившиеся результаты с теми, что на слайде и запишите в лист самоконтроля.

7. Подведение итогов урока.

Подведем итог нашего занятия:

— Какие уравнения мы сегодня научились решать?

— С какими способами решения иррациональных уравнений познакомились?

— Запишите своё отношение к занятию в лист самоконтроля (приложение 1).

8.Задание на дом и его инструктаж .

Запишите задание на дом: Яковлев Г.Н. Алгебра и начала анализа.
Учебник. Ч.1- М.: Наука, 1987 § 10 (п.2), карточка с заданиями (приложение 3).
Задание выполнить письменно в тетради к следующему занятию.

9. Заключительная часть урока.

На этом наше занятие окончено, до встречи на следующем занятии.

Предварительный просмотр:

Подписи к слайдам:

Иррациональные уравнения. Я бы почувствовал настоящее удовлетворение лишь в том случае, если бы смог передать ученику гибкость ума, которая дала бы ему в дальнейшем возможность самостоятельно решать задачи. У.У . Сойер .

План 1) Понятие иррациональных уравнений. 2) Методы решения иррациональных уравнений. 3) Решение иррациональных уравнений.

Определение Иррациональным уравнением называют уравнение, в котором неизвестная величина содержится под знаком радикала. Примеры:

Приёмы решения иррациональных уравнений. Решение иррационального уравнения основано на преобразовании его к рациональному уравнению. Это достигается возведением обеих его частей в одну и ту же степень (иногда несколько раз). При этом если обе части уравнения возвести в нечётную степень, то получим уравнение, равносильное данному. Уравнения, имеющие одни и те же корни, называют равносильными.

В процессе решения заданное уравнение заменяют более простым, при этом используя следующие правила преобразований уравнения в равносильное: — перенос слагаемых из одной части равенства в другую с противоположным знаком; — обе части уравнения можно умножить или разделить на одно и то же, отличное от нуля число; — уравнение можно заменить равносильной системой или решить f(x)=0 , а затем отбросить те корни, которые обращают в 0 знаменатель.

Степень чётная: При возведении обеих частей иррационального уравнения в чётную степень получается уравнение, являющееся следствием исходного. Уравнению-следствию удовлетворяют все корни исходного уравнения, но могут появиться и корни, которые не являются корнями исходного уравнения, так называемые посторонние корни . Поэтому все найденные корни уравнения-следствия проверяют подстановкой в исходное уравнение и посторонние корни отбрасывают.

К появлению посторонних корней могут привести (не обязательно приводят) следующие преобразования: — возведение в квадрат (или четную степень) обеих частей уравнения; — умножение обеих частей уравнения на алгебраическое выражение, содержащее переменную.

Правила равносильного перехода для простейших иррациональных уравнений 1) если a>0 , то (здесь проверять область допустимых значений не надо); 2) если ; 3) если квадратный корень равен нулю, то и подкоренное выражение равно нулю: Уравнение вида решаются по аналогичным правилам. 4)

Пример 1. Решить уравнение: Подставив полученные корни в исходное уравнение, видим, что они удовлетворяют ему. Ответ: -4; 4.

Пример 2. Решить уравнение: . Решение. По определению арифметического квадратного корня: — это неотрицательное число, квадрат которого равен a . Ответ: решений нет.

Уравнение вида: Способ решения: . Пример 3. Решить уравнение: Решение. Ответ: 3

Рассмотрим уравнение Из двух систем решают ту, которая решается проще. Пример 4. Решить уравнение: Ответ: -7.

Пример 5. Решить уравнение: . Решение. Подкоренные выражения не должны быть отрицательными: Полученная система неравенств решений не имеет, не имеет их, таким образом, и исходное уравнение. Ответ: решений нет.

Линейные комбинации двух и более радикалов. Если уравнение содержит два и более радикала, то необходимо придерживаться следующих правил: 1. указать область допустимых значений уравнения; 2. распределить радикалы по обеим частям, чтобы обе части уравнения стали неотрицательными; 3. только после этого возводить в квадрат левую и правую части уравнения.

Пример 6. Решить уравнение: Решение. Ответ: 5.

Пример 7. Решить уравнение: . Решение. Ответ:

Использование замены переменных

Уравнение вида Произведение равно 0, если хотя бы один из множителей равен 0, а второй при этом имеет смысл: Пример 9.

Степень нечётная: Решим уравнение: Ответ: 0; 2. Проверка не нужна!

Графический способ решения иррационального уравнения Графически решить уравнение .Построим в одной системе координат графики функций и . Графики пересекаются в одной точке при x  0,5. Ответ: 0,5.

Тест 1) Какие из уравнений не являются иррациональными? 2) Какие иррациональные уравнения не имеют корней? 3) Какие иррациональные уравнения необходимо решить с проверкой? 4) Какие уравнения имеют один корень?

Ключ к тесту 1 2 3 4 в, д б г а, е

Ответы к самостоятельной работе Вариант 1 . Вариант 2 . № задания 1 2 3 4 5 6 ответ 2) 1) 3) 0 10 -8 № задания 1 2 3 4 5 6 ответ 3) 2) 1) -14 10 -6

Предварительный просмотр:

Самостоятельная работа по теме: Иррациональные уравнения.

1. Решите уравнение:

1) -2 2) 3 3) 6 4) -2; 3.

2. Решите уравнение:

1) – 1 2) 1 3) – 6 4) 6 .

3.Укажите промежуток, которому принадлежат все корни уравнения:

1) (- 2; 2] 2) (- 4; — 3) 3) (- 3; — 2] 4) [0;2]

4 . Найдите произведение корней уравнения

5. Найдите суму корней уравнения (х – 5)

Самостоятельная работа по теме: Иррациональные уравнения.

1. Решите уравнение:

1) 4 2) 1 3) – 4 4) – 1

2. Решите уравнение:

1) 7 2) 4 3) 4; 7 4) нет корней

3. Укажите промежуток, которому принадлежат все корни уравнения = х +1

1)[3; 6] 2) (-2; 0) 3) (0; 2) 4) [- 4; — 1)

4. Найдите сумму корней уравнения

5. Найдите произведение корней уравнения ( х + 2)

6. Решите уравнение:

Предварительный просмотр:

Лист самоконтроля студента ________________________________________

К занятию по теме « Иррациональные уравнения».


источники:

http://100urokov.ru/predmety/urok-11-uravneniya-irracionalnye

http://nsportal.ru/shkola/algebra/library/2016/12/14/otkrytyy-urok-po-distsipline-matematika-na-temu-irratsionalnye