Решение квадратного тригонометрического уравнения с тангенсом

Как решать тригонометрические уравнения, сводящиеся к квадратным — примеры

Основные понятия по теме

Тригонометрическими уравнениями называют уравнения с неизвестной, которая расположена строго под знаком тригонометрической функции.

Квадратные тригонометрические уравнения являются такими уравнениями, которые имеют вид:

a sin 2 x + b sin x + c = 0

Здесь a отлично от нуля.

Тригонометрические уравнения, сводящиеся к квадратным, обладают следующими признаками:

  1. Наличие в уравнении тригонометрических функций от одного аргумента, либо таких, которые можно просто свести к одному аргументу.
  2. Присутствие в уравнении единственной тригонометрической функции, либо все функции можно свести к одной.

Правила решения тригонометрических уравнений сводящихся к квадратным

Рассмотрим случай, когда преобразованное уравнение записано таким образом:

a f 2 ( x ) + b f ( x ) + c = 0

При этом а отлично от нуля, f ( x ) является одной из функций sin x , cos x , tg x , ctg x .

Тогда данное уравнение путем замены f ( x ) = t сводится к квадратному уравнению.

Существует ряд правил, позволяющих решать тригонометрические уравнения, сводящиеся к квадратным. Данная информация будет полезна при выполнении самостоятельных работ и практических заданий в десятом классе.

sin 2 α + cos 2 α = 1 tg α · ctg α = 1 tg α = sin α cos α ctg α = cos α sin α 1 + tg 2 α = 1 cos 2 α 1 + ctg 2 α = 1 sin 2 α ▸

Формулы двойного угла:

sin 2 α = 2 sin α cos α cos 2 α = cos 2 α — sin 2 α sin α cos α = 1 2 sin 2 α cos 2 α = 2 cos 2 α — 1 cos 2 α = 1 — 2 sin 2 α tg 2 α = 2 tg α 1 — tg 2 α ctg 2 α = ctg 2 α — 1 2 ctg α ▸

Последовательность действий при решении тригонометрических уравнений, сводящихся к квадратным:

  • выражение одной тригонометрической функции с помощью другой путем применения основных тождеств;
  • выполнение подстановки;
  • преобразование уравнения;
  • введение обозначения, к примеру, sin x = y;
  • решение квадратного уравнения;
  • обратная замена;
  • решение тригонометрического уравнения.

Рассмотрим решение тригонометрического уравнения:

6 cos 2 x — 13 sin x — 13 = 0

cos 2 α = 1 — sin 2 α

В результате уравнение преобразуется таким образом:

6 sin 2 x + 13 sin x + 7 = 0

Заменим sin x на t. Зная, что ОДЗ синуса sin x ∈ [ — 1 ; 1 ] , запишем, t ∈ [ — 1 ; 1 ] . Тогда:

6 t 2 + 13 t + 7 = 0

Заметим, что t 1 не соответствует условиям. Выполним обратную замену и получим решение уравнения:

sin x = — 1 ⇒ x = — π 2 + 2 π n , n ∈ ℤ .

Разберем другой пример:

5 sin 2 x = cos 4 x — 3

Воспользуемся уравнением двойного угла для косинуса:

cos 2 α = 1 — 2 sin 2 α

cos 4 x = 1 — 2 sin 2 2 x

Подставим значения и преобразуем уравнение:

2 sin 2 2 x + 5 sin 2 x + 2 = 0

Заменим sin 2 x на t. Зная, что ОДЗ для синуса sin 2 x ∈ [ — 1 ; 1 ] , можно записать:

2 t 2 + 5 t + 2 = 0

Заметим, что t 1 является посторонним, так как не соответствует условию. Путем обратной замены получим:

sin 2 x = — 1 2 ⇒ x 1 = — π 12 + π n , x 2 = — 5 π 12 + π n , n ∈ ℤ .

Примеры решения задач с пояснениями

Найти корни уравнения:

tg x + 3 ctg x + 4 = 0

При tg x · ctg x = 1 имеем, что:

Заменим tg x на t. Зная, что ОДЗ тангенса tg x ∈ ℝ , запишем:

t + 3 t + 4 = 0 ⇒ t 2 + 4 t + 3 t = 0

Вспомним, что дробь может обладать нулевым значением при нулевом числителе и знаменателе, отличном от нуля. В результате:

Путем обратной замены получим:

Ответ: x = — arctg 3 + π n , x = — π 4 + π n , n ∈ ℤ .

Решить тригонометрическое уравнение на интервале ( — π ; π ) :

2 sin 2 x + 2 sin x — 2 = 0

Заменим sin x на t. В результате уравнение преобразуется:

2 t 2 + 2 t — 2 = 0

Определим дискриминант уравнения:

Таким образом, корни равны:

Исходя из того, что t = sin x ∈ [ — 1 ; 1 ] , можно сделать вывод о лишнем корне t 2 . В результате:

sin x = 2 2 ⇔ x = π 4 + 2 π n

x = 3 π 4 + 2 π m , n , m ∈ ℤ .

Выполним проверку корней на соответствие условиям задания:

— π π 4 + 2 π n π ⇔ — 5 8 n 3 8 ⇒ n = 0 ⇒ x = π 4 .

— π 3 π 4 + 2 π m π ⇔ — 7 8 m 1 8 ⇒ m = 0 ⇒ x = 3 π 4 .

Ответ: корни уравнения π 4 + 2 π n ; 3 π 4 + 2 π m ; n , m ∈ ℤ , из них соответствуют интервалу π 4 ; 3 π 4 .

Дано тригонометрическое уравнение, которое нужно решить на отрезке ( 0 ; π ) :

2 sin 2 x + 2 = 5 sin x

Заметим, что область допустимых значений определяет х как произвольное число. Перенесем члены в левую часть:

2 sin 2 x + 2 — 5 sin x = 0

Данное уравнение является квадратным по отношению к sin x . Заменим sin x на t. Тогда уравнение будет преобразовано таким образом:

2 t 2 — 5 t + 2 = 0

Исходя из того, что sin x ≤ 1 , sin x = 2 является лишним корнем. Таким образом:

Решениями sin x = a являются:

x = arcsin a + 2 π k

x = π — arcsin a + 2 π k

Здесь k ∈ ℤ . В результате, корнями уравнения sin x = 0 , 5 являются:

x = 5 π 6 + 2 π k

Определим, какие корни соответствуют интервалу:

0 π 6 + 2 π k π ⇔ — π 6 2 π k 5 π 6 ⇔ — 1 12 k 5 12

Заметим, что k ∈ ℤ . В таком случае из этих корней подходящими являются лишь те, что соответствуют условию k = 0:

Рассмотрим другие решения:

0 5 π 6 + 2 π k π ⇔ — 5 π 6 2 π k π 6 ⇔ — 5 12 k 1 12

Заметим, что k ∈ ℤ . В таком случае выберем решение при k = 0:

Ответ: корни уравнения π 6 + 2 π k , 5 π 6 + 2 π k , при k ∈ ℤ ; решения, соответствующие интервалу π 6 , 5 π 6 .

Решить уравнение на промежутке [ π ; 3 π ) :

ctg 2 x + 1 cos x — 11 π 2 — 1 = 0

Вспомним формулу приведения:

cos x — 11 π 2 = — sin x

Также пригодится формула:

ctg 2 x + 1 = 1 sin 2 x

1 sin 2 x — 1 — 1 sin x — 1 = 0 ⇔ 1 sin 2 x — 1 sin x — 2 = 0

Заменим 1 sin x на t. В результате:

Путем обратной замены получим:

sin x = — 1 ⇔ x = — π 2 + 2 π n , n ∈ ℤ sin x = 1 2 ⇔ x = π 6 + 2 π k ; x = 5 π 6 + 2 π m , k , m ∈ ℤ .

Определим подходящие решения:

Ответ: корни уравнения — π 2 + 2 π n ; π 6 + 2 π k ; 5 π 6 + 2 π m ; n , k , m ∈ ℤ , из них соответствуют интервалу 3 π 2 ; 13 π 6 ; 17 π 6 .

Определить корни уравнения на отрезке ( π ; 2 π ) :

cos ( 2 x ) + 3 2 sin x = 3

Область допустимых значений предусматривает произвольные значения для х. На первом этапе следует преобразовать уравнение с помощью формулы косинуса двойного угла и перенести члены уравнения в левую сторону:

1 — 2 sin 2 x + 3 2 sin x — 3 = 0 ⇔ 2 sin 2 x — 3 2 sin x + 2 = 0

Заметим, что в результате получено уравнение, которое является квадратным по отношению к sin x . Заменим sin x на t. В результате:

2 t 2 — 3 2 t + 2 = 0

t 1 , 2 = 3 2 ± 2 4

Исходя из того, что sin x ≤ 1 , делаем вывод о лишнем корне sin x = 2 . В результате:

Решения для уравнения sin x = a следующие:

x = arcsin a + 2 π k

x = π — arcsin a + 2 π k

Здесь k ∈ ℤ . В результате получим следующие решения для sin x = 2 2 :

x = 3 π 4 + 2 π k

Определим подходящие корни:

π π 4 + 2 π k 2 π ⇔ 3 π 4 2 π k 7 π 4 ⇔ 3 8 k 7 8

Заметим, что k ∈ ℤ . Тогда указанные корни не соответствуют интервалу ( π ; 2 π ) .

Определим корни, которые подходят к задаче:

π 3 π 4 + 2 π k 2 π ⇔ π 4 2 π k 5 π 4 ⇔ 1 8 k 5 8

Зная, что k ∈ ℤ , можно сделать вывод об отсутствии корней, которые соответствуют интервалу ( π ; 2 π ) .

Ответ: корни уравнения π 4 + 2 π k , 3 π 4 + 2 π k , где k ∈ ℤ , решения, соответствующие интервалу, отсутствуют.

Требуется найти решения тригонометрического уравнения:

3 tg 4 2 x — 10 tg 2 2 x + 3 = 0

Корни нужно записать в соответствии с интервалом — π 4 ; π 4

Область допустимых значений в данном случае:

Заменим tg 2 2 x на t, при t ⩾ 0 . Уравнение будет преобразовано таким образом:

3 t 2 — 10 t + 3 = 0

Путем обратной замены получим:

Можно сделать вывод о выполнении условия относительно области допустимых значений при найденных значениях х . Тогда остается отобрать нужные корни:

— π 4 π 6 + π 2 n 1 π 4 ⇒ — 5 6 n 1 1 6 ⇒ n 1 = 0 ⇒ x = π 6

Вычислим еще три решения, которые включены в заданный интервал:

x = — π 12 ; — π 6 ; π 12 .

Ответ: корнями уравнения являются ± π 6 + π 2 n , ± π 12 + π 2 m , n , m ∈ ℤ , из них соответствуют промежутку — π 6 ; — π 12 ; π 12 ; π 6 .

Тригонометрические уравнения — формулы, решения, примеры

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Простейшие тригонометрические уравнения

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| \leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| \leq 1` имеет бесконечное множество решений.

Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + \pi n, n \in Z`

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + \pi n, n \in Z`

Формулы корней тригонометрических уравнений в таблице

Для синуса:Для косинуса:Для тангенса и котангенса:Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью тригонометрических формул преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

Решение. Используя формулы приведения, имеем:

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt `:

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a>=cos \varphi`, ` \frac b> =sin \varphi`, `\frac c>=C`, тогда:

`cos \varphi sin x + sin \varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt <3^2+4^2>`, получим:

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos \varphi sin x+sin \varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `\frac <1+cos x>=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

Решение квадратных тригонометрических уравнений

Тригонометрия

Решение квадратных тригонометрических уравнений.

Уравнение распадается на два уравнения: и

Решение первого уравнения: ,

Решение второго уравнения:

Объединяем эти решения и получим:

Уравнение распадается на два уравнения: и

Решение первого уравнения: ,

Решение второго уравнения: ,

Объединяем эти решения и получим:

Для решения данного уравнения введен новую переменную: sin ( x )= t ,

Определим область допустимых значений для нашей переменной:

Решим квадратное уравнение относительно t :

Проверяем корни нашего уравнения на область допустимых значений t

Решаем полученные уравнения относительно x :

Для решения данного уравнения введен новую переменную: cos ( x )= t ,

Определим область допустимых значений для нашей переменной:

Решим квадратное уравнение относительно t :

Проверяем корни нашего уравнения на область допустимых значений t

t = 2 > 1 , следовательно не имеет решений:

В данном случае решать уравнение является грубейшей ошибкой, т.к. , а arccos 2 вообще не имеет смысла!

t = , следовательно , решаем полученное уравнение:

В данном уравнении необходимо применить основное тригонометрическое тождество, для того чтобы прийти к одной функции

Приводим к функции синуса, т.к. проще представить

, приводим подобные слагаемые:

, умножим на (-1) для простоты решения:

Для решения данного уравнения введен новую переменную: sin ( x )= t ,

Определим область допустимых значений для нашей переменной:

Решим квадратное уравнение относительно t :

Проверяем корни нашего уравнения на область допустимых значений t

t = , следовательно, не имеет решений:

t = , следовательно, , ответ

Разберемся с областью определения для решений данного уравнения.

Область определения тангенса

Область определения котангенса

Объединив эти промежутки получим:

, на чертеже обозначено выколотыми точками.

Для решения данного уравнения используем тригонометрическое тождество , перепишем уравнение:

Решим квадратное уравнение относительно t :


источники:

http://matemonline.com/dh/%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F/trigonometricheskie-uravnenija/

http://math4everyone.info/math/reshenie-kvadratnyh-trigonometricheskih-uravnenij/