Решение квадратного уравнения на компьютере

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение квадратного уравнения.

С помощью этой математической программы вы можете решить квадратное уравнение.

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
— с помощью дискриминанта
— с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5z +1/7z^2
Результат: \( 3\frac<1> <3>— 5\frac<6> <5>z + \frac<1><7>z^2 \)

При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
\( -x^2+6x+1<,>4=0, \quad 8x^2-7x=0, \quad x^2-\frac<4><9>=0 \)
имеет вид
\( ax^2+bx+c=0, \)
где x — переменная, a, b и c — числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x — переменная, a, b и c — некоторые числа, причём \( a \neq 0 \).

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где \( a \neq 0 \), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
\( x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 — неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где \( c \neq 0 \);
2) ax 2 +bx=0, где \( b \neq 0 \);
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при \( c \neq 0 \) переносят его свободный член в правую часть и делят обе части уравнения на a:
\( x^2 = -\frac \Rightarrow x_ <1,2>= \pm \sqrt< -\frac> \)

Так как \( c \neq 0 \), то \( -\frac \neq 0 \)

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \( b \neq 0 \) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\( x^2+\fracx +\frac=0 \)

Преобразуем это уравнение, выделив квадрат двучлена:
\( x^2+2x \cdot \frac<2a>+\left( \frac<2a>\right)^2- \left( \frac<2a>\right)^2 + \frac = 0 \Rightarrow \)

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
\( D = b^2-4ac \)

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
\( x_ <1,2>= \frac < -b \pm \sqrt> <2a>\), где \( D= b^2-4ac \)

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \( x=-\frac <2a>\).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
\( \left\< \begin x_1+x_2=-p \\ x_1 \cdot x_2=q \end \right. \)

Решение квадратных уравнений на компьютере

-Муниципальное общеобразовательное учреждение
Кувакинская средняя общеобразовательная школа

Учитель информатики МОУ «Кувакинская СОШ»

с Кувакино, 2011

Как реализуется метод решения квадратных уравнений на компьютере.

Алгоритм решения данной задачи сначала должен быть представлен в виде словесного описания или графически в виде блок-схемы. Алгоритм вычисления корней квадратного уравнения может быть представлен в виде блок схем, изображенных на следующих рисунках:

Изображение алгоритма в виде блок-схемы позволяет наглядно представить последовательность действий, необходимых для решения поставленной задачи, убедиться самому программисту в правильности понимания поставленной задачи.

После разработки алгоритма решения задачи и представления его в виде блок-схемы можно перейти к написанию программы – последовательности инструкций на выбранном языке программирования, соответствующей разработанному алгоритму. Например, ниже приведен фрагмент программы решения квадратного уравнения, соответствующий приведенному выше алгоритму, составленному на языке Turbo Pascal.

if D 0 then writeln ( ‘x1=’,(-b+sqrt(D))/(2*a)); writeln (‘x2=’, (-b-sqrt(D));

2. РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ СРЕДСТВАМИ EXCEL

2.1 Решение квадратных уравнений в Eхcel.

В ячейку А1 набираем фразу «Решение квадратного уравнения вида Ах2+Вх+С=0», и выделяем ячейки строки А от 1 до той которая находится перед пунктирной линией. Форматируем расположение, начертание и размер букв через опцию ЯЧЕЙКИ меню ФОРМАТ. В подпанели Выравнивание устанавливаем значение «Центрировать по выделению». В подпанели Шрифт — размер и начертание букв (у нашем варианте это полужирный курсив и размер 14). Устанавливаем курсор на ячейке В4 и набираем А=, в ячейке В5 — В=, в ячейке В6 — С=, и производим форматирование по описанному выше методу. Ячейки С4, С5 и С6 выделяем рамкой в подпанели Рамка панели ЯЧЕЙКИ меню ФОРМАТ. Эти ячейки предназначены для ввода в них значений А, В, С.

Набор формулы. В ячейках Е4 и Е6 пишем соответственно х1= и х2=, и форматируем по методу, описанному выше. А в ячейки F4 и F6 записываем формулы так. Сначала ставится равно, потом значение ячейки В5 нажатием на ней мышки, функция Корень вставляется из пункта меню ВСТАВКА — ФУНКЦИЯ. Выбираем из математических функций — КОРЕНЬ. И нажимаем кнопку Далее — для ввода значения, находящегося под корнем. Следуя формуле дискриминанта вводим B5^2-(4*B4*B6), а общий вид формулы — =(-B5 + КОРЕНЬ(B5^2-(4*B4*B6)))/(2*B4) Такую же формулу вставляем и в ячейку F6, но со знаком минус: =(-B5 — КОРЕНЬ(B5^2-(4*B4*B6)))/(2*B4) Теперь после ввода пользователем значений А, В,С в ячейки В4, В5 и В6, в ячейках F4 и F6 будут выводится соответственно значения х1 и х2.

2.2 Нахождение корней квадратного уравнения с помощью
логических функций.

В ячейку А1 набираем фразу «Решение квадратного уравнения вида Ах2+Вх+С=0»,

В ячейку А2 записываем А=, А3 – В=, в А4 – С=. Ячейки В2. В3, В4 выделяем рамкой.

В ячейки D2, D3, D4 записываем соответственно D=, x1=, x2=.

Напишем формулу для подсчета дискриминанта в информатике =В3*В3+4*В2*В4.

Теперь запишем формулы, используя функцию “ЕСЛИ”:

    Для X1: =ЕСЛИ(E2>0;(-B3-КОРЕНЬ(E2))/(2*B2);ЕСЛИ(E2=0;-(B3)/(2*B2); «корней нет»)) Для X2: =ЕСЛИ(E2>0;(-B3+КОРЕНЬ(E2))/(2*B2);ЕСЛИ(E2=0;-(B3)/(2*B2); «корней нет»))

Решение квадратного уравнения x2-2x+1=0

Решение уравнения х2-5х+6=0.

2.3 Нахождение корней квадратного уравнения с помощью
средства «Поиск решения»

Команда Подбор параметра является удобной для решения задач поиска определенного целевого значения, зависящего от одного неизвестного параметра. Для более сложных задач следует использовать команду Поиск решения (Решатель), доступ к которой реализован через пункт меню Сервис/Поиск решения.

Рассмотрим, как воспользоваться Поиском решения на примере того же квадратного уравнения.

После открытия диалога Поиск решения (рис.9) необходимо выполнить следующие действия:

1) в поле Установить целевую ячейку ввести адрес ячейки, содержащей

формулу для вычисления значений оптимизируемой функции, в нашем примере целевая ячейка – это С4, а

формула в ней имеет вид: = C3^2 — 5*C3 + 6;

2) для максимизации значения целевой ячейки, установить переключатель максимальному значению в положение , для минимизации используется переключатель минимальному значению, в нашем случае устанавливаем переключатель в положение значению и вводим значение 0;

3) в поле Изменяя ячейки ввести адреса изменяемых ячеек, т. е. аргументов целевой функции (С3), разделяя их знаком «;» (или щелкая

мышью при нажатой клавише Сtrl на соответствующих ячейках),

для автоматического поиска всех влияющих на решение ячеек используется кнопка Предположить;

4) в поле Ограничения с помощью кнопки Добавить ввести все ограничения, которым должен отвечать результат поиска: для нашего примера ограничений задавать не нужно;

5) для запуска процесса поиска решения нажать кнопку Выполнить.

Проект по информатике «Решение квадратных уравнений с помощью информационных и коммуникационных технологий»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

Проект по информатике
«Решение квадратных уравнений с помощью информационных и коммуникационных технологий»

Квадратные уравнения умели решать вавилоняне около 2000 лет до н.э.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Правило решения квадратных уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом вавилоняне «дошли до этого». Но почти во всех найденных папирусах и клинописных текстах приводятся только задачи с решениями. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел!».
Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Правило решения квадратных уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом вавилоняне «дошли до этого». Но почти во всех найденных папирусах и клинописных текстах приводятся только задачи с решениями. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел!».

Древние ученые о квадратных уравнениях

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако он также признавал только положительные корни.
Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако он также признавал только положительные корни.

Различные методы решения квадратных уравнений в математике

Разложение левой части на множители;
Метод выделения полного квадрата;
Графический способ;
С применением формул корней квадратного уравнения;
С применением теоремы Виета;
Способом «переброски» коэффициентов;
По сумме коэффициентов квадратного уравнения;
Геометрический способ;
С помощью окружностей;
С помощью номограмм

Вопросы для анкеты.
Вопросы для анкеты.
Какие способы решения квадратных уравнений вы знаете?
Какие трудности при решении квадратного уравнения у вас возникают?
Хочется ли вам, чтобы компьютер за вас решал квадратные уравнения?
С помощью, какой программы вы могли бы решить квадратное уравнение на компьютере?

Различные методы решения квадратных уравнений на компьютере
Решение квадратных уравнений, используя язык программирования Паскаль

Решение квадратных уравнений через дискриминант с помощью табличного процессора MS Excel.

Решение квадратных уравнений, используя язык программирования Паскаль

Итак, моя задача сводилась к следующему: по известным коэффициентам квадратного уравнения вычислить дискриминант, сделать вывод о наличии корней и, если корни есть, найти их.

После разработки алгоритма решения задачи и представления его в виде блок-схемы можно перейти к написанию программы – последовательности инструкций на выбранном языке программирования, соответствующей разработанному алгоритму.
После разработки алгоритма решения задачи и представления его в виде блок-схемы можно перейти к написанию программы – последовательности инструкций на выбранном языке программирования, соответствующей разработанному алгоритму.

Решение квадратных уравнений через дискриминант с помощью табличного процессора MS Excel.

Задача.
По известным коэффициентам квадратного уравнения вычислить дискриминант, сделать вывод о наличии корней и, если корни есть, найти их.

Технология решения квадратного уравнения в MS Excel :
х2 — 3х + 2 = 0
1. В ячейки А1:А4 введите соответственно тексты
«а=», «b=», «c=», «D=».
2. В ячейки В1:ВЗ введите соответствующие значения
коэффициентов: 1; -3; 2.
3. В ячейку В4 введите формулу =В2^2-4*В1*В3
(Если все сделали правильно, то в ячейке B4 будет число 1).
4. В ячейку А5 введите текст «Есть ли корни?».
5. В ячейку В5 введите формулу =ЕСЛИ(В4 =0;»х1=»;»»).
7. В ячейку В7 введите формулу = ЕСЛИ(В4>=0;»х2=»;»»),
8. В ячейку С6 введите формулу
= ЕСЛИ(В4>=0;(-В2+КОРЕНЬ(В4))/(2*В1);»»).
9. В ячейку С7 введите формулу
= ЕСЛИ(В4>=0;(-В2-КОРЕНЬ(В4))/(2*В1);»»).

Решение квадратных уравнении

Литература
Большая советская энциклопедия. – М., Советская энциклопедия, 1974.
Газета «Математика». – Издательский дом «Первое сентября ».
Глейзер Г.И. История математики в школе. 7-8 классы. – М., Просвещение, 1982.
Детская энциклопедия. Т. 2. – М., Педагогика, 1972.
Дорофеева ВА. Страницы истории на уроках математики. – Львов, Квантор, 1991.
Лиман М.М. Школьникам о математике и математиках. – М., Просвещение, 1981.
Энциклопедия для детей. – М., Аванта +, 1997.
Электронные ресурсы

Краткое описание документа:

Проект по информатике «Решение квадратных уравнений с помощью информационных и коммуникационных технологий»

Квадратные уравнения – это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении различных тригонометрических, показательных, логарифмических, иррациональных, трансцендентных уравнений и неравенств, большого количества разных типов задач.

В школьном курсе математики подробно изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Квадратные уравнения находят широкое применение при решении различных задач.

В данном проекте рассматриваются способы решения квадратных уравнений с применением формул корней квадратного уравнения с помощью программирования на языке Паскаль и с помощью табличного процессора MS Excel . Но сначала мы познакомимся с историческими сведениями о квадратных уравнениях, с различными способами решения квадратных уравнений.

Актуальность. Современный мир построен на базе компьютерных электронных систем, которые проникли практически во все сферы деятельности человека. Основным элементом техногенного развития человечества является компьютер. Именно это устройство сегодня решает бесконечное множество поставленных человеком задач. Уже сегодня не владеющему компьютером человеку сложно найти достойную работу.


источники:

http://pandia.ru/text/79/084/71443.php

http://infourok.ru/proekt_po_informatike_reshenie_kvadratnyh_uravneniy_s_pomoschyu_informacionnyh_i-563551.htm