Решение квадратных кубических и квадратных уравнений

Линейные, квадратные, кубические уравнения

Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.

Линейные уравнения

Линейным называется такое уравнение, в котором неизвестное $x$ находится в числителе уравнения и без показателей. Например: $2х – 5 = 3$

Линейные уравнения сводятся к виду $ax = b$, которое получается при помощи раскрытия скобок, приведения подобных слагаемых, переноса слагаемых из одной части уравнения в другую, а также умножения или деления обеих частей уравнения на число, отличное от нуля.

$5 (5 + 3х) — 10х = 8$

$25 + 15х — 10х = 8$

Перенесем неизвестные слагаемые в левую часть уравнения, а известные в правую. При переносе из одной части в другую, у слагаемого меняется знак на противоположный.

$15х — 10х = 8 — 25$

Приведем подобные слагаемые.

$5х = -17$ — это конечный результат преобразований.

После преобразований к виду $ax = b$, где, a=0, корень уравнения находим по формуле $х = /$

Квадратные уравнения

Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.

Числа $a, b, c$ называются коэффициентами квадратного уравнения.

  • $a$ — старший коэффициент;
  • $b$ — средний коэффициент;
  • $c$ — свободный член.

Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.

Решение неполных квадратных уравнений

Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.

1. Вынесем общий множитель $x$ за скобки.

Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:

2. Решаем получившиеся уравнения каждое отдельно.

Вынесем х как общий множитель за скобки:

Приравняем каждый множитель к нулю и найдем корни уравнения.

$x = 0$ или $4х — 5 = 0$

$х_1 = 0 х_2 = 1,25$

Ответ: $х_1 = 0; х_2 = 1,25$

Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$

Для решения данного неполного квадратного уравнения выразим $x^2$.

При решении последнего уравнения возможны два случая:

2. $D = 0$. В данном случае решение даёт два двукратных корня:

Извлечем кубический корень из обеих частей

Соберем известные слагаемые в правой части

Дробно рациональные уравнения

Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.

Чтобы решить дробное уравнение, необходимо:

  1. найти общий знаменатель дробей, входящих в уравнение;
  2. умножить обе части уравнения на общий знаменатель;
  3. решить получившееся целое уравнение;
  4. исключить из его корней те, которые обращают в ноль общий знаменатель.

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

$4x · x + 1 · x — <3·x>/ = 0$

3. решаем полученное уравнение

Решим вторым устным способом, т.к. $а + с = b$

Тогда $х_1 = — 1, х_2 = <3>/<4>$

4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $х_1 = — 1, х_2 = <3>/<4>$

При решении уравнения с двумя дробями можно использовать основное свойство пропорции.

Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

Воспользуемся основным свойством пропорции

Раскроем скобки и соберем все слагаемые в левой части уравнения

Решим данное квадратное уравнение первым устным способом, т.к.

В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Линейные, квадратные и простейшие кубические уравнения. Примеры

Определение

Уравнение (с одной переменной) — это некоторое равенство двух выражений, содержащее неизвестную (переменную). \[f(x)=g(x) \qquad \qquad (1)\] Пусть для определенности все дальнейшие уравнения содержат переменную, обозначенную буквой \(x\) .

Замечание

Заметим, что \(x\) — это просто некоторое число, значение которого неизвестно.

Определение

Областью определения (или областью допустимых значений, сокращенно ОДЗ) любого уравнения вида \((1)\) будем называть множество значений переменной \(x\) , при которых определены (то есть не теряют смысла) функции \(f(x)\) и \(g(x)\) .

Пример

Уравнение \(\dfrac <10>=5\) определено при всех значениях переменной \(x\) , кроме \(x=1\) , потому что в этом случае знаменатель дроби в левой части равенства обращается в ноль. Значит, ОДЗ уравнения \(x\in (-\infty;1)\cup(1;+\infty)\) .

Определение

Корнем уравнения называется то числовое значение \(x\) , при котором уравнение обращается в верное равенство.
Иногда корни уравнения называют решением этого уравнения.

Например, корнем уравнения из предыдущего примера является число \(x=3\) , потому как тогда уравнение принимает вид \(\dfrac<10><3-1>=5\) или, что то же самое, \(5=5\) , что является верным равенством.

Замечание

1) Заметим, что уравнение может как иметь корни, так и не иметь корней. Например, уравнение \(\dfrac 1x=0\) ни при каких значениях \(x\) не может быть верным, потому что дробь равна нулю, когда ее числитель равен нулю, а знаменатель при этом не теряет смысла. У нашей дроби числитель \(1\ne 0\) .

2) Фраза “решить уравнение” означает найти все корни данного уравнения или доказать, что корней нет.

Определение

Два уравнения равносильны (или эквивалентны), если они имеют одинаковые решения.
Например, уравнения \(x=3\) и \(3x=6+x\) эквивалентны, т.к. оба имеют единственное решение \(x=3\) .

Эквивалентность уравнений обозначается так: \(x=3 \quad \Leftrightarrow \quad 3x=6+x\) .

Свойства уравнений

1. В любом уравнении можно переносить слагаемые из одной части равенства в другую, при этом меняя их знак на противоположный. При этом полученное уравнение равносильно исходному.
Например, уравнение \(x+4=2x^2\) можно переписать в виде \(x+4-2x^2=0\) .

2. В любом уравнении можно правую и левую части умножать или делить на одно и то же число, не равное нулю. При этом полученное уравнение равносильно исходному.
Например, уравнение \(0,5x=-2\) равносильно уравнению \(x=-4\) , которое получено из исходного путем умножения обеих частей на \(2\) .

3. В любом уравнении можно к правой и левой частям прибавлять одно и то же число. При этом полученное уравнение равносильно исходному.
Например, уравнение \(x+2=5x^2\) после прибавления к обеим частям \(-2\) примет вид \(x=5x^2-2\) .

\[<\Large<\text<Линейные уравнения>>>\] Линейное уравнение – это уравнение вида \[ax + b = 0\qquad \qquad (2)\] где \(a\ne 0,b\) – числа, или уравнение, к нему сводящееся.

ОДЗ линейного уравнения \((2)\) — все \(x \in\mathbb\) .

Линейное уравнение \(ax+b=0\) преобразуется в \(ax=-b\) и всегда имеет единственное решение \(x=-\dfrac ba\) .
Например, \(2x-4=0\) имеет корень \(x=2\) . Замечание: при переносе слагаемых из одной части равенства в другую знак слагаемого меняется на противоположный. Например, выражение \(x-5=8\) преобразуется в выражение \(x=8+5\) .
Знак, стоящий перед слагаемым – это и есть его знак, то есть в выражении \(x-5\) два слагаемых: \(x\) и \(-5\) . Если перед слагаемым не стоит никакого знака, то подразумевается, что перед ним стоит знак “ \(+\) ”.

\[<\Large<\text<Квадратные уравнения>>>\] Квадратное уравнение – это уравнение вида \[ax^2+bx+c=0 \qquad \qquad (3)\] где \(a, b, c\) – числа, причем \(a\ne 0\) , или уравнение, к нему сводящееся.

Число \(a\) называется старшим (первым) коэффициентом, число \(b\) – вторым коэффициентом, число \(c\) – свободным членом.

Замечание

1) Заметим, что если \(a=0\) , то уравнение \((3)\) становится линейным; именно поэтому в определении \(a\ne 0\) .

2) Выражение \(ax^2+bx+c\) называется квадратичным (квадратным) трехчленом.

ВАЖНО! Обращаем ваше внимание на то, что, например, в квадратном трехчлене \(7-x^2+2x\) коэффициент \(a=-1\) , \(b=2\) и \(c=7\) ! Так как \(7-x^2+2x=-x^2+2x+7\) , а по определению \(a\) – коэффициент перед \(x^2\) , \(b\) – коэффициент перед \(x\) , \(c\) – свободный член.

Определение

Дискриминантом квадратного уравнения \((3)\) называется выражение \(D=b^2-4ac\) .

Корни квадратного уравнения

1) Если дискриминант квадратного уравнения больше нуля ( \(D>0\) ), то оно имеет два различных корня \[x_1=\dfrac<-b-\sqrt D> <2a>\qquad \text <и>\qquad x_2=\dfrac<-b+\sqrt D><2a>\]

2) Если дискриминант квадратного уравнения равен нулю ( \(D=0\) ), то оно имеет два совпадающих корня (часто говорят, что оно имеет один корень) \[x=-\dfrac b<2a>\]

3) Если дискриминант квадратного уравнения меньше нуля ( \(D ), то оно не имеет корней.

Пример:
Решите уравнение \[3x^2 — 33x + 90 = 0.\]

Решение.
Найдём дискриминант данного уравнения: \[D = 33^2 — 4\cdot 3\cdot 90 = 9\] Следовательно, уравнение имеет два различных корня, равных \[x_1=\dfrac<33 + 3> <6>= 6 \qquad \text <и>\qquad x_2=\dfrac<33 - 3> <6>= 5\]

Теорема Виета

Пусть квадратное уравнение \(ax^2 + bx + c = 0\) , \(a\neq 0\) , имеет два корня \(x_1\) и \(x_2\) (возможно, совпадающих), то есть \(D\geqslant 0\) . Тогда их сумма равна \[x_1+x_2=-\dfrac\] а их произведение равно \[x_1\cdot x_2=\dfrac\]

Доказательство

Определение

Квадратное уравнение называется приведенным, если старший коэффициент \(a=1\) .
Любое квадратное уравнение можно сделать приведенным: для этого необходимо разделить уравнение на \(a\) .

Следствие

Для приведенного квадратного уравнения \(x^2+px+q=0\) теорема Виета выглядит следующим образом: \[x_1+x_2=-p, \qquad \qquad x_1\cdot x_2=q\]

Теорема: разложение на множители квадратного трехчлена

Пусть уравнение \(ax^2 + bx + c = 0\) , \(a\neq 0\) , имеет два корня (возможно, совпадающих), то есть \(D\geqslant 0\) . Тогда при любом значении \(x\) выполнено \[ax^2 + bx + c = a(x — x_1)(x — x_2),\] где \(x_1\) и \(x_2\) – корни уравнения \(ax^2 + bx + c = 0\) (возможно, совпадающие).

Доказательство

Сделаем преобразования: \[\begin &a(x-x_1)(x-x_2)=a\left(x — \dfrac<-b + \sqrt><2a>\right)\left(x — \dfrac<-b - \sqrt><2a>\right) =a\left(x^2 — x\left(\dfrac<-b + \sqrt> <2a>+ \dfrac<-b - \sqrt><2a>\right) + \dfrac<4a^2>\right)=\\[2ex] &=a\left(x^2-x\cdot \left(-\dfrac ba\right)+\dfrac<4a^2>\right) =a(x^2+\dfrac ba x+\dfrac ca)=ax^2+bx+c \end\]

Пример

Разложить на множители квадратный трехчлен \(3x^2-2x-1\) .

Решение.
Рассмотрим уравнение \(3x^2-2x-1=0\) и найдем его корни.
\(D=(-2)^2-4\cdot 3\cdot (-1)=16\) , значит

Таким образом, \(3x^2-2x-1=3(x-1)(x+\frac13)=(x-1)(3x+1)\) .

\[<\Large<\text<Простейшие кубические уравнения>>>\] \(\bullet\) Кубический корень из числа \(a\) – это такое число \(b\) , которое при возведении в куб равно \(a\) : \[\sqrt[3] a=b\quad \text<то же самое, что >\quad a=b^3\] \(\bullet\) Таблица кубов чисел от 1 до 10: \[\begin <|ll|>\hline 1^3=1 & \quad6^3=216 \\ 2^3=8 & \quad7^3=343\\ 3^3=27 & \quad8^3=512\\ 4^3=64 & \quad9^3=729\\ 5^3=125 & \quad10^3=1000\\ \hline \end\] \(\bullet\) Простейшие кубические уравнения – уравнения, сводящиеся к виду \[x^3=a\] Для любого числа \(a\) такие уравнения имеют единственный корень \[x=\sqrt[3]a\] Пример:
1) решением уравнения \(x^3=-8\) является \(x=\sqrt[3]<-8>=-2\) .
2) решением уравнения \(x^3=64\) является \(x=4\) .

Теория линейных и квадратных уравнений традиционно изучается школьниками Москвы и других городов в 8 классе. И хотя данная тема рассматривается в рамках образовательного курса достаточно подробно, и ей отводится немало времени, с заданиями из этого раздела выпускники не всегда справляются с легкостью. Именно поэтому, готовясь к сдаче ЕГЭ, учащимся непременно стоит освежить в памяти теорию и разобраться в решении задач с линейными и квадратными уравнениями.

Сделать это легко, оперативно и эффективно вам позволит образовательный портал «Школково». Всю необходимую теорию по теме «Квадратные и линейные уравнения» для подготовки к ЕГЭ вы можете найти в соответствующем разделе. Весь базовый материал составлен нашими специалистами на основе многолетнего опыта и представлен в максимально доступной форме. Изучив определения, формулы и основные свойства линейных и квадратных уравнений, учащиеся смогут не только вспомнить всею необходимую теорию, но и грамотно объяснить принцип решения задач ЕГЭ. Закрепить усвоенный материал вам помогут упражнения в разделе «Каталог». Здесь вы можете найти как простые, так и более сложные задачи по данной теме. Для каждого задания на сайте наши специалисты прописали подробный алгоритм решения и правильный ответ.

Изучить теорию по теме «Линейные и квадратные уравнения» и попрактиковаться в выполнении упражнений можно в режиме онлайн. При необходимости любое задание можно сохранить в «Избранное», чтобы в дальнейшем можно было к нему вернуться или обсудить с преподавателем.

«Решение уравнений высших степеней». 9-й класс

Разделы: Математика

Класс: 9

Учебная:

  • Углубить знания учащихся по теме “ Решение уравнений высших степеней” и обобщить учебный материал.
  • Познакомить учащихся с приёмами решения уравнений высших степеней.
  • Научить учащихся применять теорию делимости при решения уравнений высших степеней.
  • Научить учащихся выполнять деление “уголком” многочлена на многочлен.
  • Развивать умения и навыки работы с уравнениями высших степеней.
  • Развивающая:

    1. Развитие внимания учащихся.
    2. Развитие умения добиваться результатов труда.
    3. Развитие интереса к изучению алгебры и навыков самостоятельной работы.

    Воспитывающая:

  • Воспитание чувства коллективизма.
  • Формирование чувства ответственности за результат работы.
  • Формирование у учащихся адекватной самооценки при выборе отметки за работу на уроке.
  • Оборудование: компьютер, проектор.

    1 этап работы. Организационный момент.

    2 этап работы. Мотивация и выход на постановку проблемы

    Уравнение одно из важнейших понятий математики. Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры.

    В школьном курсе изучения математики очень много внимания уделяется решению различного вида уравнений. До девятого класса мы умели решать только линейные и квадратные уравнения. Уравнения третьей, четвёртой и т.д. степеней называются уравнениями высших степеней. В девятом классе мы познакомились с двумя основными приёмами решения некоторых уравнений третьей и четвёртой степеней: разложение многочлена на множители и использование замены переменной.

    А можно ли решить уравнения более высоких степеней? На этот вопрос мы постараемся сегодня найти ответ.

    3 этап работы. Повторить ранее изученный материал. Ввести понятие уравнения высших степеней.

    1) Решение линейного уравнения.

    Линейным называется уравнение вида , где по определению. Такое уравнение имеет единственный корень .

    2) Решение квадратного уравнения.

    Квадратным называется уравнение вида , где . Количество корней и сами корни определяются дискриминантом уравнения . Для уравнение корней не имеет, для имеет один корень (два одинаковых корня)

    , для имеет два различных корня .

    Из рассмотренных линейных и квадратных уравнений видим, что количество корней уравнения не более его степени. В курсе высшей алгебры доказывается, что уравнение -й степени имеет не более n корней. Что касается самих корней, то тут ситуация намного сложнее. Для уравнений третьей и четвёртой степеней известны формулы для нахождения корней. Однако эти формулы очень сложны и громоздки и практического применения не имеют. Для уравнений пятой и более высоких степеней общих формул не существует и существовать не может (как было доказано в XIX в. Н. Абелем и Э. Галуа).

    Будем называть уравнения третьей, четвёртой и т.д. степеней уравнениями высших степеней. Некоторые уравнения высоких степеней удаётся решить с помощью двух основных приёмов: разложением многочлена на множители или с использованием замены переменной.

    3) Решение кубического уравнения.

    Решим кубическое уравнение

    Сгруппируем члены многочлена, стоящего в левой части уравнения, и разложим на множители. Получим:

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три линейных уравнения:

    Итак, данное кубическое уравнение имеет три корня: ; ;.

    4) Решение биквадратного уравнения.

    Очень распространены биквадратные уравнения, которые имеют вид (т.е. уравнения, квадратные относительно ). Для их решения вводят новую переменную .

    Решим биквадратное уравнение .

    Введём новую переменную и получим квадратное уравнение , корнями которого являются числа и 4.

    Вернёмся к старой переменной и получим два простейших квадратных уравнения:

    (корни и )

    (корни и )

    Итак, данное биквадратное уравнение имеет четыре корня:

    ; ;.

    Попробуем решить уравнение используя выше изложенные приёмы.

    4 этап работы. Привести некоторые утверждения о корнях многочлена вида , где многочлен n-й степени

    Приведём некоторые утверждения о корнях многочлена вида :

    1) Многочлен -й степени имеет не более корней (с учётом их кратностей). Например, многочлен третьей степени не может иметь четыре корня.

    2) Многочлен нечётной степени имеет хотя бы один корень. Например, многочлены первой, третьей, пятой и т.д. степени имеют хотя бы один корень. Многочлены чётной степени корней могут и не иметь.

    3) Если на концах отрезка значения многочлена имеют разные знаки (т.е. ,), то на интервале находится хотя бы один корень. Это утверждение широко используется для приближенного вычисления корней многочлена.

    4) Если число является корнем многочлена вида , то этот многочлен можно представить в виде произведения , где многочлен (-й степени. Другими словами, многочлена вида можно разделить без остатка на двучлен . Это позволяет уравнение -й степени сводить к уравнению (-й степени (понижать степень уравнения).

    5) Если уравнение со всеми целыми коэффициентами (причём свободный член ) имеет целый корень , то этот корень является делителем свободного члена . Такое утверждение позволяет подобрать целый корень многочлена (если он есть).

    5 этап работы. Показать как применяется теория делимости для решения уравнений высших степеней. Рассмотреть примеры решения уравнений высших степеней , в которых для разложения левой части на множители используется способ деления многочлена на многочлен “уголком”.

    Пример 1. Решим уравнение .

    Если это уравнение имеет целый корень, то он является делителем свободного члена (-1), т.е. равняется одному из чисел: . Проверка показывает, что корнем уравнения является число -1. Значит, многочлен можно представить в виде произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:

    Таким образом, мы фактически разложили левую часть уравнения на множители:

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем два уравнения:

    Итак, данное уравнение имеет три корня:

    Пример 2. Решим уравнение .

    Если это уравнение имеет целый корень, то он является делителем свободного члена (9),т.е. равняется одному из чисел: ;. Проверим:

    Значит, многочлен можно представить в виде произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:

    Таким образом, мы разложили левую часть уравнения на множители:

    Аналогичным образом поступим и с многочленом .

    Если это уравнение имеет целый корень, то он является делителем свободного члена (9), т.е. равняется одному из чисел: ;. Проверим:

    Значит, многочлен можно представить в виде

    произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:

    Таким образом, мы разложили левую часть исходного уравнения на множители:

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три уравнения:

    Итак, данное уравнение имеет четыре корня:

    6 этап работы. Закрепление изученного материала.

    Решите уравнения высших степеней, используя способ деления многочлена на многочлен “уголком”.

    7 этап работы. Вывод урока.

    Решить уравнения высших степеней можно следующим образом:

    • используя формулы для нахождения корней (если они известны);
    • используя замену переменной;
    • раскладывая многочлен в левой части уравнения на множители, используя способ деления многочлена на многочлен “уголком”.

    8 этап работы. Домашнее задание.

    Дома решить уравнения высших степеней, используя способ деления многочлена на многочлен “уголком” (раздать листы с заданиями).


    источники:

    http://shkolkovo.net/theory/109

    http://urok.1sept.ru/articles/657320