Решение квадратных уравнений извлечение квадратного корня

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Решение квадратных уравнений: формула корней, примеры

    В продолжение темы «Решение уравнений» материал данной статьи познакомит вас с квадратными уравнениями.

    Рассмотрим все подробно: суть и запись квадратного уравнения, зададим сопутствующие термины, разберем схему решения неполных и полных уравнений, познакомимся с формулой корней и дискриминантом, установим связи между корнями и коэффициентами, ну и конечно приведем наглядное решение практических примеров.

    Квадратное уравнение, его виды

    Квадратное уравнение – это уравнение, записанное как a · x 2 + b · x + c = 0 , где x – переменная, a , b и c – некоторые числа, при этом a не есть нуль.

    Зачастую квадратные уравнения также носят название уравнений второй степени, поскольку по сути квадратное уравнение есть алгебраическое уравнение второй степени.

    Приведем пример для иллюстрации заданного определения: 9 · x 2 + 16 · x + 2 = 0 ; 7 , 5 · x 2 + 3 , 1 · x + 0 , 11 = 0 и т.п. – это квадратные уравнения.

    Числа a , b и c – это коэффициенты квадратного уравнения a · x 2 + b · x + c = 0 , при этом коэффициент a носит название первого, или старшего, или коэффициента при x 2 , b – второго коэффициента, или коэффициента при x , а c называют свободным членом.

    К примеру, в квадратном уравнении 6 · x 2 − 2 · x − 11 = 0 старший коэффициент равен 6 , второй коэффициент есть − 2 , а свободный член равен − 11 . Обратим внимание на тот факт, что, когда коэффициенты b и/или c являются отрицательными, то используется краткая форма записи вида 6 · x 2 − 2 · x − 11 = 0 , а не 6 · x 2 + ( − 2 ) · x + ( − 11 ) = 0 .

    Уточним также такой аспект: если коэффициенты a и/или b равны 1 или − 1 , то явного участия в записи квадратного уравнения они могут не принимать, что объясняется особенностями записи указанных числовых коэффициентов. К примеру, в квадратном уравнении y 2 − y + 7 = 0 старший коэффициент равен 1 , а второй коэффициент есть − 1 .

    Приведенные и неприведенные квадратные уравнения

    По значению первого коэффициента квадратные уравнения подразделяют на приведенные и неприведенные.

    Приведенное квадратное уравнение – это квадратное уравнение, где старший коэффициент равен 1 . При иных значениях старшего коэффициента квадратное уравнение является неприведенным.

    Приведем примеры: квадратные уравнения x 2 − 4 · x + 3 = 0 , x 2 − x − 4 5 = 0 являются приведенными, в каждом из которых старший коэффициент равен 1 .

    9 · x 2 − x − 2 = 0 — неприведенное квадратное уравнение, где первый коэффициент отличен от 1 .

    Любое неприведенное квадратное уравнение возможно преобразовать в приведенное уравнение, если разделить обе его части на первый коэффициент (равносильное преобразование). Преобразованное уравнение будет иметь такие же корни, как и заданное неприведенное уравнение или так же не иметь корней вовсе.

    Рассмотрение конкретного примера позволит нам наглядно продемонстрировать выполнение перехода от неприведенного квадратного уравнения к приведенному.

    Задано уравнение 6 · x 2 + 18 · x − 7 = 0 . Необходимо преобразовать исходное уравнение в приведенную форму.

    Решение

    Cогласно указанной выше схеме разделим обе части исходного уравнения на старший коэффициент 6 . Тогда получим: ( 6 · x 2 + 18 · x − 7 ) : 3 = 0 : 3 , и это то же самое, что: ( 6 · x 2 ) : 3 + ( 18 · x ) : 3 − 7 : 3 = 0 и далее: ( 6 : 6 ) · x 2 + ( 18 : 6 ) · x − 7 : 6 = 0 . Отсюда: x 2 + 3 · x — 1 1 6 = 0 . Таким образом, получено уравнение, равносильное заданному.

    Ответ: x 2 + 3 · x — 1 1 6 = 0 .

    Полные и неполные квадратные уравнения

    Обратимся к определению квадратного уравнения. В нем мы уточнили, что a ≠ 0 . Подобное условие необходимо, чтобы уравнение a · x 2 + b · x + c = 0 было именно квадратным, поскольку при a = 0 оно по сути преобразуется в линейное уравнение b · x + c = 0 .

    В случае же, когда коэффициенты b и c равны нулю (что возможно, как по отдельности, так и совместно), квадратное уравнение носит название неполного.

    Неполное квадратное уравнение – такое квадратное уравнение a · x 2 + b · x + c = 0 , где хотя бы один из коэффициентов b и c (или оба) равен нулю.

    Полное квадратное уравнение – квадратное уравнение, в котором все числовые коэффициенты не равны нулю.

    Порассуждаем, почему типам квадратных уравнений даны именно такие названия.

    При b = 0 квадратное уравнение примет вид a · x 2 + 0 · x + c = 0 , что то же самое, что a · x 2 + c = 0 . При c = 0 квадратное уравнение записано как a · x 2 + b · x + 0 = 0 , что равносильно a · x 2 + b · x = 0 . При b = 0 и c = 0 уравнение примет вид a · x 2 = 0 . Уравнения, которые мы получили, отличны от полного квадратного уравнения тем, что в их левых частях не содержится либо слагаемого с переменной x , либо свободного члена, либо обоих сразу. Собственно, этот факт и задал название такому типу уравнений – неполное.

    Например, x 2 + 3 · x + 4 = 0 и − 7 · x 2 − 2 · x + 1 , 3 = 0 – это полные квадратные уравнения; x 2 = 0 , − 5 · x 2 = 0 ; 11 · x 2 + 2 = 0 , − x 2 − 6 · x = 0 – неполные квадратные уравнения.

    Решение неполных квадратных уравнений

    Заданное выше определение дает возможность выделить следующие виды неполных квадратных уравнений:

    • a · x 2 = 0 , такому уравнению соответствуют коэффициенты b = 0 и c = 0 ;
    • a · x 2 + c = 0 при b = 0 ;
    • a · x 2 + b · x = 0 при c = 0 .

    Рассмотрим последовательно решение каждого вида неполного квадратного уравнения.

    Решение уравнения a·x 2 =0

    Как уже было указано выше, такому уравнению отвечают коэффициенты b и c , равные нулю. Уравнение a · x 2 = 0 возможно преобразовать в равносильное ему уравнение x 2 = 0 , которое мы получим, поделив обе части исходного уравнения на число a , не равное нулю. Очевидный факт, что корень уравнения x 2 = 0 это нуль, поскольку 0 2 = 0 . Иных корней это уравнение не имеет, что объяснимо свойствами степени: для любого числа p , не равного нулю, верно неравенство p 2 > 0 , из чего следует, что при p ≠ 0 равенство p 2 = 0 никогда не будет достигнуто.

    Таким образом, для неполного квадратного уравнение a · x 2 = 0 существует единственный корень x = 0 .

    Для примера решим неполное квадратное уравнение − 3 · x 2 = 0 . Ему равносильно уравнение x 2 = 0 , его единственным корнем является x = 0 , тогда и исходное уравнение имеет единственный корень — нуль.

    Кратко решение оформляется так:

    − 3 · x 2 = 0 , x 2 = 0 , x = 0 .

    Решение уравнения a · x 2 + c = 0

    На очереди — решение неполных квадратных уравнений, где b = 0 , c ≠ 0 , то есть уравнений вида a · x 2 + c = 0 . Преобразуем это уравнение, перенеся слагаемое из одной части уравнения в другую, сменив знак на противоположный и разделив обе части уравнения на число, не равное нулю:

    • переносим c в правую часть, что дает уравнение a · x 2 = − c ;
    • делим обе части уравнения на a , получаем в итоге x = — c a .

    Наши преобразования являются равносильными, соответственно полученное уравнение также равносильно исходному, и этот факт дает возможность делать вывод о корнях уравнения. От того, каковы значения a и c зависит значение выражения — c a : оно может иметь знак минус (допустим, если a = 1 и c = 2 , тогда — c a = — 2 1 = — 2 ) или знак плюс (например, если a = − 2 и c = 6 , то — c a = — 6 — 2 = 3 ); оно не равно нулю, поскольку c ≠ 0 . Подробнее остановимся на ситуациях, когда — c a 0 и — c a > 0 .

    В случае, когда — c a 0 , уравнение x 2 = — c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при — c a 0 ни для какого числа p равенство p 2 = — c a не может быть верным.

    Все иначе, когда — c a > 0 : вспомним о квадратном корне, и станет очевидно, что корнем уравнения x 2 = — c a будет число — c a , поскольку — c a 2 = — c a . Нетрудно понять, что число — — c a — также корень уравнения x 2 = — c a : действительно, — — c a 2 = — c a .

    Прочих корней уравнение не будет иметь. Мы можем это продемонстрировать, используя метод от противного. Для начала зададим обозначения найденных выше корней как x 1 и − x 1 . Выскажем предположение, что уравнение x 2 = — c a имеет также корень x 2 , который отличается от корней x 1 и − x 1 . Мы знаем, что, подставив в уравнение вместо x его корни, преобразуем уравнение в справедливое числовое равенство.

    Для x 1 и − x 1 запишем: x 1 2 = — c a , а для x 2 — x 2 2 = — c a . Опираясь на свойства числовых равенств, почленно вычтем одно верное равенство из другого, что даст нам: x 1 2 − x 2 2 = 0 . Используем свойства действий с числами, чтобы переписать последнее равенство как ( x 1 − x 2 ) · ( x 1 + x 2 ) = 0 . Известно, что произведение двух чисел есть нуль тогда и только тогда, когда хотя бы одно из чисел является нулем. Из сказанного следует, что x 1 − x 2 = 0 и/или x 1 + x 2 = 0 , что то же самое, x 2 = x 1 и/или x 2 = − x 1 . Возникло очевидное противоречие, ведь вначале было условлено, что корень уравнения x 2 отличается от x 1 и − x 1 . Так, мы доказали, что уравнение не имеет иных корней, кроме x = — c a и x = — — c a .

    Резюмируем все рассуждения выше.

    Неполное квадратное уравнение a · x 2 + c = 0 равносильно уравнению x 2 = — c a , которое:

    • не будет иметь корней при — c a 0 ;
    • будет иметь два корня x = — c a и x = — — c a при — c a > 0 .

    Приведем примеры решения уравнений a · x 2 + c = 0 .

    Задано квадратное уравнение 9 · x 2 + 7 = 0 . Необходимо найти его решение.

    Решение

    Перенесем свободный член в правую часть уравнения, тогда уравнение примет вид 9 · x 2 = − 7 .
    Разделим обе части полученного уравнения на 9 , придем к x 2 = — 7 9 . В правой части мы видим число со знаком минус, что означает: у заданного уравнения нет корней. Тогда и исходное неполное квадратное уравнение 9 · x 2 + 7 = 0 не будет иметь корней.

    Ответ: уравнение 9 · x 2 + 7 = 0 не имеет корней.

    Необходимо решить уравнение − x 2 + 36 = 0 .

    Решение

    Перенесем 36 в правую часть: − x 2 = − 36 .
    Разделим обе части на − 1 , получим x 2 = 36 . В правой части — положительное число, отсюда можно сделать вывод, что x = 36 или x = — 36 .
    Извлечем корень и запишем окончательный итог: неполное квадратное уравнение − x 2 + 36 = 0 имеет два корня x = 6 или x = − 6 .

    Ответ: x = 6 или x = − 6 .

    Решение уравнения a·x 2 +b·x=0

    Разберем третий вид неполных квадратных уравнений, когда c = 0 . Чтобы найти решение неполного квадратного уравнения a · x 2 + b · x = 0 , воспользуемся методом разложения на множители. Разложим на множители многочлен, который находится в левой части уравнения, вынеся за скобки общий множитель x . Этот шаг даст возможность преобразовать исходное неполное квадратное уравнение в равносильное ему x · ( a · x + b ) = 0 . А это уравнение, в свою очередь, равносильно совокупности уравнений x = 0 и a · x + b = 0 . Уравнение a · x + b = 0 линейное, и корень его: x = − b a .

    Таким образом, неполное квадратное уравнение a · x 2 + b · x = 0 будет иметь два корня x = 0 и x = − b a .

    Закрепим материал примером.

    Необходимо найти решение уравнения 2 3 · x 2 — 2 2 7 · x = 0 .

    Решение

    Вынесем x за скобки и получим уравнение x · 2 3 · x — 2 2 7 = 0 . Это уравнение равносильно уравнениям x = 0 и 2 3 · x — 2 2 7 = 0 . Теперь следует решить полученное линейное уравнение: 2 3 · x = 2 2 7 , x = 2 2 7 2 3 .

    Далее осуществим деление смешанного числа на обыкновенную дробь и определяем, что x = 3 3 7 . Таким образом, корни исходного уравнения это: x = 0 и x = 3 3 7 .

    Кратко решение уравнения запишем так:

    2 3 · x 2 — 2 2 7 · x = 0 x · 2 3 · x — 2 2 7 = 0

    x = 0 или 2 3 · x — 2 2 7 = 0

    x = 0 или x = 3 3 7

    Ответ: x = 0 , x = 3 3 7 .

    Дискриминант, формула корней квадратного уравнения

    Для нахождения решения квадратных уравнений существует формула корней:

    x = — b ± D 2 · a , где D = b 2 − 4 · a · c – так называемый дискриминант квадратного уравнения.

    Запись x = — b ± D 2 · a по сути означает, что x 1 = — b + D 2 · a , x 2 = — b — D 2 · a .

    Нелишним будет понимать, как была выведена указанная формула и каким образом ее применять.

    Вывод формулы корней квадратного уравнения

    Пускай перед нами стоит задача решить квадратное уравнение a · x 2 + b · x + c = 0 . Осуществим ряд равносильных преобразований:

    • разделим обе части уравнения на число a, отличное от нуля, получим приведенное квадратное уравнение: x 2 + b a · x + c a = 0 ;
    • выделим полный квадрат в левой части получившегося уравнения:
      x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 — b 2 · a 2 + c a = = x + b 2 · a 2 — b 2 · a 2 + c a
      После этого уравнения примет вид: x + b 2 · a 2 — b 2 · a 2 + c a = 0 ;
    • теперь возможно сделать перенос двух последних слагаемых в правую часть, сменив знак на противоположный, после чего получаем: x + b 2 · a 2 = b 2 · a 2 — c a ;
    • наконец, преобразуем выражение, записанное в правой части последнего равенства:
      b 2 · a 2 — c a = b 2 4 · a 2 — c a = b 2 4 · a 2 — 4 · a · c 4 · a 2 = b 2 — 4 · a · c 4 · a 2 .

    Таким образом, мы пришли к уравнению x + b 2 · a 2 = b 2 — 4 · a · c 4 · a 2 , равносильному исходному уравнению a · x 2 + b · x + c = 0 .

    Решение подобных уравнений мы разбирали в предыдущих пунктах (решение неполных квадратных уравнений). Уже полученный опыт дает возможность сделать вывод касательно корней уравнения x + b 2 · a 2 = b 2 — 4 · a · c 4 · a 2 :

    • при b 2 — 4 · a · c 4 · a 2 0 уравнение не имеет действительных решений;
    • при b 2 — 4 · a · c 4 · a 2 = 0 уравнение имеет вид x + b 2 · a 2 = 0 , тогда x + b 2 · a = 0 .

    Отсюда очевиден единственный корень x = — b 2 · a ;

    • при b 2 — 4 · a · c 4 · a 2 > 0 верным будет: x + b 2 · a = b 2 — 4 · a · c 4 · a 2 или x = b 2 · a — b 2 — 4 · a · c 4 · a 2 , что то же самое, что x + — b 2 · a = b 2 — 4 · a · c 4 · a 2 или x = — b 2 · a — b 2 — 4 · a · c 4 · a 2 , т.е. уравнение имеет два корня.

    Возможно сделать вывод, что наличие или отсутствие корней уравнения x + b 2 · a 2 = b 2 — 4 · a · c 4 · a 2 (а значит и исходного уравнения) зависит от знака выражения b 2 — 4 · a · c 4 · a 2 , записанного в правой части. А знак этого выражения задается знаком числителя, (знаменатель 4 · a 2 всегда будет положителен), то есть, знаком выражения b 2 − 4 · a · c . Этому выражению b 2 − 4 · a · c дано название — дискриминант квадратного уравнения и определена в качестве его обозначения буква D . Здесь можно записать суть дискриминанта – по его значению и знаку делают вывод, будет ли квадратное уравнение иметь действительные корни, и, если будет, то каково количество корней — один или два.

    Вернемся к уравнению x + b 2 · a 2 = b 2 — 4 · a · c 4 · a 2 . Перепишем его, используя обозначение дискриминанта: x + b 2 · a 2 = D 4 · a 2 .

    Вновь сформулируем выводы:

    • при D 0 уравнение не имеет действительных корней;
    • при D = 0 уравнение имеет единственный корень x = — b 2 · a ;
    • при D > 0 уравнение имеет два корня: x = — b 2 · a + D 4 · a 2 или x = — b 2 · a — D 4 · a 2 . Эти корни на основе свойства радикалов возможно записать в виде: x = — b 2 · a + D 2 · a или — b 2 · a — D 2 · a . А, когда раскроем модули и приведем дроби к общему знаменателю, получим: x = — b + D 2 · a , x = — b — D 2 · a .

    Так, результатом наших рассуждений стало выведение формулы корней квадратного уравнения:

    x = — b + D 2 · a , x = — b — D 2 · a , дискриминант D вычисляется по формуле D = b 2 − 4 · a · c .

    Данные формулы дают возможность при дискриминанте больше нуля определить оба действительных корня. Когда дискриминант равен нулю, применение обеих формул даст один и тот же корень, как единственное решение квадратного уравнения. В случае, когда дискриминант отрицателен, попытавшись использовать формулу корня квадратного уравнения, мы столкнемся с необходимостью извлечь квадратный корень из отрицательного числа, что выведет нас за рамки действительных чисел. При отрицательном дискриминанте у квадратного уравнения не будет действительных корней, но возможна пара комплексно сопряженных корней, определяемых теми же полученными нами формулами корней.

    Алгоритм решения квадратных уравнений по формулам корней

    Решить квадратное уравнение возможно, сразу задействуя формулу корней, но в основном так поступают при необходимости найти комплексные корни.

    В основной же массе случаев обычно подразумевается поиск не комплексных, а действительных корней квадратного уравнения. Тогда оптимально перед тем, как использовать формулы корней квадратного уравнения, сначала определить дискриминант и удостовериться, что он не является отрицательным (в ином случае сделаем вывод, что у уравнения нет действительных корней), а после приступить к вычислению значения корней.

    Рассуждения выше дают возможность сформулировать алгоритм решения квадратного уравнения.

    Чтобы решить квадратное уравнение a · x 2 + b · x + c = 0 , необходимо:

    • по формуле D = b 2 − 4 · a · c найти значение дискриминанта;
    • при D 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
    • при D = 0 найти единственный корень уравнения по формуле x = — b 2 · a ;
    • при D > 0 определить два действительных корня квадратного уравнения по формуле x = — b ± D 2 · a .

    Отметим, что, когда дискриминант есть нуль, можно использовать формулу x = — b ± D 2 · a , она даст тот же результат, что и формула x = — b 2 · a .

    Примеры решения квадратных уравнений

    Приведем решение примеров при различных значениях дискриминанта.

    Необходимо найти корни уравнения x 2 + 2 · x − 6 = 0 .

    Решение

    Запишем числовые коэффициенты квадратного уравнения: a = 1 , b = 2 и c = − 6 . Далее действуем по алгоритму, т.е. приступим к вычислению дискриминанта, для чего подставим коэффициенты a , b и c в формулу дискриминанта: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · ( − 6 ) = 4 + 24 = 28 .

    Итак, мы получили D > 0 , а это означает, что исходное уравнение будет иметь два действительных корня.
    Для их нахождения используем формулу корня x = — b ± D 2 · a и, подставив соответствующие значения, получим: x = — 2 ± 28 2 · 1 . Упростим полученное выражение, вынеся множитель за знак корня с последующим сокращением дроби:

    x = — 2 + 2 · 7 2 или x = — 2 — 2 · 7 2

    x = — 1 + 7 или x = — 1 — 7

    Ответ: x = — 1 + 7 ​​​​​​, x = — 1 — 7 .

    Необходимо решить квадратное уравнение − 4 · x 2 + 28 · x − 49 = 0 .

    Решение

    Определим дискриминант: D = 28 2 − 4 · ( − 4 ) · ( − 49 ) = 784 − 784 = 0 . При таком значении дискриминанта исходное уравнение будет иметь лишь один корень, определяемый по формуле x = — b 2 · a .

    x = — 28 2 · ( — 4 ) x = 3 , 5

    Ответ: x = 3 , 5 .

    Необходимо решить уравнение 5 · y 2 + 6 · y + 2 = 0

    Решение

    Числовые коэффициенты этого уравнения будут: a = 5 , b = 6 и c = 2 . Используем эти значения для нахождения дискриминанта: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Вычисленный дискриминант отрицателен, таким образом, исходное квадратное уравнение не имеет действительных корней.

    В случае, когда стоит задача указать комплексные корни, применим формулу корней, выполняя действия с комплексными числами:

    x = — 6 + 2 · i 10 или x = — 6 — 2 · i 10 ,

    x = — 3 5 + 1 5 · i или x = — 3 5 — 1 5 · i .

    Ответ: действительные корни отсутствуют; комплексные корни следующие: — 3 5 + 1 5 · i , — 3 5 — 1 5 · i .

    В школьной программе стандартно нет требования искать комплексные корни, поэтому, если в ходе решения дискриминант определен как отрицательный, сразу записывается ответ, что действительных корней нет.

    Формула корней для четных вторых коэффициентов

    Формула корней x = — b ± D 2 · a ( D = b 2 − 4 · a · c ) дает возможность получить еще одну формулу, более компактную, позволяющую находить решения квадратных уравнений с четным коэффициентом при x (либо с коэффициентом вида 2 · n , к примеру, 2 · 3 или 14 · ln 5 = 2 · 7 · ln 5 ). Покажем, как выводится эта формула.

    Пусть перед нами стоит задача найти решение квадратного уравнения a · x 2 + 2 · n · x + c = 0 . Действуем по алгоритму: определяем дискриминант D = ( 2 · n ) 2 − 4 · a · c = 4 · n 2 − 4 · a · c = 4 · ( n 2 − a · c ) , а затем используем формулу корней:

    x = — 2 · n ± D 2 · a , x = — 2 · n ± 4 · n 2 — a · c 2 · a , x = — 2 · n ± 2 n 2 — a · c 2 · a , x = — n ± n 2 — a · c a .

    Пусть выражение n 2 − a · c будет обозначено как D 1 (иногда его обозначают D ‘ ). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2 · n примет вид:

    x = — n ± D 1 a , где D 1 = n 2 − a · c .

    Легко увидеть, что что D = 4 · D 1 , или D 1 = D 4 . Иначе говоря, D 1 – это четверть дискриминанта. Очевидно, что знак D 1 такой же, как знак D , а значит знак D 1 также может служить индикатором наличия или отсутствия корней квадратного уравнения.

    Таким образом, чтобы найти решение квадратного уравнения со вторым коэффициентом 2 · n , необходимо:

    • найти D 1 = n 2 − a · c ;
    • при D 1 0 сделать вывод, что действительных корней нет;
    • при D 1 = 0 определить единственный корень уравнения по формуле x = — n a ;
    • при D 1 > 0 определить два действительных корня по формуле x = — n ± D 1 a .

    Необходимо решить квадратное уравнение 5 · x 2 − 6 · x − 32 = 0 .

    Решение

    Второй коэффициент заданного уравнения можем представить как 2 · ( − 3 ) . Тогда перепишем заданное квадратное уравнение как 5 · x 2 + 2 · ( − 3 ) · x − 32 = 0 , где a = 5 , n = − 3 и c = − 32 .

    Вычислим четвертую часть дискриминанта: D 1 = n 2 − a · c = ( − 3 ) 2 − 5 · ( − 32 ) = 9 + 160 = 169 . Полученное значение положительно, это означает, что уравнение имеет два действительных корня. Определим их по соответствующей формуле корней:

    x = — n ± D 1 a , x = — — 3 ± 169 5 , x = 3 ± 13 5 ,

    x = 3 + 13 5 или x = 3 — 13 5

    x = 3 1 5 или x = — 2

    Возможно было бы произвести вычисления и по обычной формуле корней квадратного уравнения, но в таком случае решение было бы более громоздким.

    Ответ: x = 3 1 5 или x = — 2 .

    Упрощение вида квадратных уравнений

    Иногда существует возможность оптимизировать вид исходного уравнения, что позволит упростить процесс вычисления корней.

    К примеру, квадратное уравнение 12 · x 2 − 4 · x − 7 = 0 явно удобнее для решения, чем 1200 · x 2 − 400 · x − 700 = 0 .

    Чаще упрощение вида квадратного уравнения производится действиями умножения или деления его обеих частей на некое число. К примеру, выше мы показали упрощенную запись уравнения 1200 · x 2 − 400 · x − 700 = 0 , полученную делением обеих его частей на 100 .

    Такое преобразование возможно, когда коэффициенты квадратного уравнения не являются взаимно простыми числами. Тогда обычно осуществляют деление обеих частей уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Как пример используем квадратное уравнение 12 · x 2 − 42 · x + 48 = 0 . Определим НОД абсолютных величин его коэффициентов: НОД ( 12 , 42 , 48 ) = НОД(НОД ( 12 , 42 ) , 48 ) = НОД ( 6 , 48 ) = 6 . Произведем деление обеих частей исходного квадратного уравнения на 6 и получим равносильное ему квадратное уравнение 2 · x 2 − 7 · x + 8 = 0 .

    Умножением обеих частей квадратного уравнения обычно избавляются от дробных коэффициентов. При этом умножают на наименьшее общее кратное знаменателей его коэффициентов. К примеру, если каждую часть квадратного уравнения 1 6 · x 2 + 2 3 · x — 3 = 0 перемножить с НОК ( 6 , 3 , 1 ) = 6 , то оно станет записано в более простом виде x 2 + 4 · x − 18 = 0 .

    Напоследок отметим, что почти всегда избавляются от минуса при первом коэффициенте квадратного уравнения, изменяя знаки каждого члена уравнения, что достигается путем умножения (или деления) обеих частей на − 1 . К примеру, от квадратного уравнения − 2 · x 2 − 3 · x + 7 = 0 можно перейти к упрощенной его версии 2 · x 2 + 3 · x − 7 = 0 .

    Связь между корнями и коэффициентами

    Уже известная нам формула корней квадратных уравнений x = — b ± D 2 · a выражает корни уравнения через его числовые коэффициенты. Опираясь на данную формулу, мы имеем возможность задать другие зависимости между корнями и коэффициентами.

    Самыми известными и применимыми являются формулы теоремы Виета:

    x 1 + x 2 = — b a и x 2 = c a .

    В частности, для приведенного квадратного уравнения сумма корней есть второй коэффициент с противоположным знаком, а произведение корней равно свободному члену. К примеру, по виду квадратного уравнения 3 · x 2 − 7 · x + 22 = 0 возможно сразу определить, что сумма его корней равна 7 3 , а произведение корней — 22 3 .

    Также можно найти ряд прочих связей между корнями и коэффициентами квадратного уравнения. Например, сумма квадратов корней квадратного уравнения может быть выражена через коэффициенты:

    x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 — 2 · x 1 · x 2 = — b a 2 — 2 · c a = b 2 a 2 — 2 · c a = b 2 — 2 · a · c a 2 .

    Квадратный корень

    Основные сведения

    Чтобы найти площадь квадрата, нужно длину его стороны возвести во вторую степень.

    Найдём площадь квадрата, длина стороны которого 3 см

    S = 3 2 = 9 см 2

    Теперь решим обратную задачу. А именно, зная площадь квадрата определим длину его стороны. Для этого воспользуемся таким инструментом как кóрень. Корень бывает квадратный, кубический, а также n-й степени.

    Сейчас наш интерес вызывает квадратный корень. По другому его называют кóрнем второй степени.

    Для нахождения длины стороны нашего квадрата, нужно найти число, вторая степень которого равна 9. Таковым является число 3. Это число и является кóрнем.

    Введём для работы с корнями новые обозначения.

    Символ кóрня выглядит как . Это по причине того, что слово корень в математике употребляется как радикал . А слово радикал происходит от латинского radix (что в переводе означает корень). Первая буква слова radix это r впоследствии преобразилась в символ корня .

    Под корнем располагáют подкореннóе выражение. В нашем случае подкоренным выражением будет число 9 (площадь квадрата)

    Нас интересовал квадратный корень (он же корень второй степени), поэтому слева над корнем указываем число 2. Это число называют показателем корня (или степенью корня)

    Получили выражение, которое читается так: « квадратный корень из числа 9» . С этого момента возникает новая задача по поиску самогó корня.

    Если число 3 возвести во вторую степень, то получится число 9. Поэтому число 3 и будет ответом:

    Значит квадрат площадью 9 см 2 имеет сторону, длина которой 3 см. Приведённое действие называют извлечéнием квадрáтного кóрня.

    Нетрудно догадаться, что квадратным корнем из числа 9 также является отрицательное число −3. При его возведении во вторую степень тоже получается число 9

    Получается, что выражение имеет два значения: 3 и −3. Но длина стороны квадрата не может быть отрицательным числом, поэтому для нашей задачи ответ будет только один, а именно 3.

    Вообще, квадратный корень имеет два противоположных значения: положительное и отрицательное.

    Например, извлечём квадратный корень из числа 4

    Это выражение имеет два значения: 2 и −2, поскольку при возведении этих чисел во вторую степень, получится один и тот же результат 4

    Поэтому ответ к выражению вида записывают с плюсом и минусом. Плюс с минусом означает, что квадратный корень имеет два противоположных значения.

    Запишем ответ к выражению с плюсом и минусом:

    Определения

    Дадим определение квадратному корню.

    Квадратным корнем из числа a называют такое число b, вторая степень которого равна a .

    То есть число b должно быть таким, чтобы выполнялось равенство b 2 = a . Число b (оно же корень) обозначается через радикал так, что . На практике левая и правая часть поменяны местами и мы видим привычное выражение

    Например, квадратным корнем из числá 16 есть число 4, поскольку число 4 во второй степени равно 16

    Корень 4 можно обозначить через радикал так, что .

    Также квадратным корнем из числá 16 есть число −4, поскольку число −4 во второй степени равно 16

    Если при решении задачи интересует только положительное значение, то корень называют не просто квадратным, а арифметическим квадратным.

    Арифметический квадратный корень из числá a — это неотрицательное число b (b ≥ 0) , при котором выполняется равенство b 2 = a .

    В нашем примере квадратными корнями из числá 16 являются корни 4 и −4, но арифметическим из них является только корень 4.

    В разговорном языке можно использовать сокращение. К примеру, выражение полностью читается так: «квадратный корень из числá шестнадцать» , а в сокращённом варианте можно прочитать так: «корень из шестнадцати».

    Не следует путать понятия корень и квадрат . Квадрат это число, которое получилось в результате возведения какого-нибудь числá во вторую степень. Например, числа 25, 36, 49 являются квадратами, потому что они получились в результате возведения во вторую степень чисел 5, 6 и 7 соответственно.

    Корнями же являются числа 5, 6 и 7 . Они являются теми числами, которые во второй степени равны 25, 36 и 49 соответственно.

    Чаще всего в квадратных корнях показатель кóрня вообще не указывается. Так, вместо записи можно использовать запись. Если в учебнике по математике встретится корень без показателя, то нужно понимать, что это квадратный корень.

    Квадратный корень из единицы равен единице. То есть справедливо следующее равенство:

    Это по причине того, что единица во второй степени равна единице:

    и квадрат, состоящий из одной квадратной единицы, имеет сторону, равную единице:

    Квадратный корень из нуля равен нулю. То есть справедливо равенство , поскольку 0 2 = 0 .

    Выражение вида смысла не имеет. Например, не имеет смысла выражение , поскольку вторая степень любого числа есть число положительное. Невозможно найти число, вторая степень которого будет равна −4.

    Если выражение вида возвести во вторую степень, то есть если записать , то это выражение будет равно подкореннóму выражению a

    Например, выражение равно 4

    Это потому что выражение равно значению 2. Но это значение сразу возвóдится во вторую степень и получается результат 4.

    Корень из квадрата числá равен модулю этого числá:

    Например, корень из числá 5, возведённого во вторую степень, равен модулю числá 5

    Если во вторую степень возвóдится отрицательное число, ответ опять же будет положительным. Например, корень из числá −5 , возведённого во вторую степень, равен модулю числá −5. А модуль числа −5 равен 5

    Действительно, если не пользуясь правилом , вычислять выражение обычным методом — сначала возвести число −5 во вторую степень, затем извлечь полученный результат, то полýчим ответ 5

    Не следует путать правило с правилом . Правило верно при любом a, тогда как правило верно в том случае, если выражение имеет смысл.

    В некоторых учебниках знак корня может выглядеть без верхней линии. Выглядит это так:

    Мéньшему числу соответствует мéньший корень, а бóльшему числу соответствует бóльший корень.

    Например, рассмотрим числа 49 и 64. Число 49 меньше, чем число 64.

    Если извлечь квадратные корни из этих чисел, то числу 49 будет соответствовать меньший корень, а числу 64 — бóльший. Действительно, √49 = 7 , а √64 = 8 ,

    Примеры извлечения квадратных корней

    Рассмотрим несколько простых примеров на извлечение квадратных корней.

    Пример 1. Извлечь квадратный корень √36

    Данный квадратный корень равен числу, квадрат которого равен 36. Таковым является число 6, поскольку 6 2 = 36

    Пример 2. Извлечь квадратный корень √49

    Данный квадратный корень равен числу, квадрат которого равен 49. Таковым является число 7, поскольку 7 2 = 49

    В таких простых примерах достаточно знать таблицу умножения. Так, мы помним, что число 49 входит в таблицу умножения на семь. То есть:

    Но 7 × 7 это 7 2

    Пример 3. Извлечь квадратный корень √100

    Данный квадратный корень равен числу, квадрат которого равен 100. Таковым является число 10 , поскольку 10 2 = 100

    Число 100 это последнее число, корень которого можно извлечь с помощью таблицы умножения. Для чисел, бóльших 100, квадратные корни можно находить с помощью таблицы квадратов.

    Пример 3. Извлечь квадратный корень √256

    Данный квадратный корень равен числу, квадрат которого равен 256. Чтобы найти это число, воспользуемся таблицей квадратов.

    Нахóдим в таблице квадратов число 256 и двигаясь от него влево и вверх определяем цифры, которые образуют число, квадрат которого равен 256.

    Видим, что это число 16 . Значит √256 = 16 .

    Пример 4. Найти значение выражения 2√16

    В данном примере число 2 умножается на выражение с корнем. Сначала вычислим корень √16 , затем перемнóжим его с числом 2

    Пример 7. Решить уравнение

    В данном примере нужно найти значение переменной x, при котором левая часть будет равна 4.

    Значение переменной x равно 16, поскольку . Значит корень уравнения равен 16.

    Примечание. Не следует путать корень уравнения и квадратный корень. Корень уравнения это значение переменной, при котором уравнение обращается в верное числовое равенство. А квадратный корень это число, вторая степень которого равна выражению, находящемуся под радикалом .

    Подобные примеры решают, пользуясь определением квадратного корня. Давайте и мы поступим так же.

    Из определения мы знаем, что квадратный корень равен числу b , при котором выполняется равенство b 2 = a .

    Применим равенство b 2 = a к нашему примеру . Роль переменной b у нас играет число 4, а роль переменной a — выражение, находящееся под корнем , а именно переменная x

    В выражении 4 2 = x вычислим левую часть, полýчим 16 = x . Поменяем левую и правую часть местами, полýчим x = 16 . В результате приходим к тому, что нашлось значение переменной x .

    Пример 8. Решить уравнение

    Перенесем −8 в правую часть, изменив знак:

    Возведем правую часть во вторую степень и приравняем её к переменной x

    Вычислим правую часть, полýчим 64 = x . Поменяем левую и правую часть местами, полýчим x = 64 . Значит корень уравнения равен 64

    Пример 9. Решить уравнение

    Воспользуемся определением квадратного корня:

    Роль переменной b играет число 7, а роль переменной a — подкореннóе выражение 3 + 5x . Возведем число 7 во вторую степень и приравняем его к 3 + 5x

    В выражении 7 2 = 3 + 5x вычислим левую часть полýчим 49 = 3 + 5x . Получилось обычное линейное уравнение. Решим его:

    Корень уравнения равен . Выполним проверку, подставив его в исходное уравнение:

    Пример 10. Найти значение выражения

    В этом выражении число 2 умножается на квадратный корень из числа 49.

    Сначала нужно извлечь квадратный корень и перемножить его с числом 2

    Приближённое значение квадратного корня

    Не каждый квадратный корень можно извлечь. Извлечь квадратный корень можно только в том случае, если удаётся найти число, вторая степень которого равна подкореннóму выражению.

    Например, извлечь квадратный корень можно, потому что удаётся найти число, вторая степень которого равна подкореннóму выражению. Таковым является число 8 , поскольку 8 2 = 64 . То есть

    А извлечь квадратный корень нельзя, потому что невозможно найти число, вторая степень которого равна 3. В таком случае говорят, что квадратный корень из числа 3 не извлекается.

    Зато можно извлечь квадратный корень из числа 3 приближённо. Извлечь квадратный корень приближённо означает найти значение, которое при возведении во вторую степень будет максимально близко к подкореннóму выражению.

    Приближённое значение ищут с определенной точностью: с точностью до целых, с точностью до десятых, с точностью до сотых и так далее.

    Найдём значение корня приближённо с точностью до десятых. Словосочетание «с точностью до десятых» говорит о том, что приближённое значение корня будет представлять собой десятичную дробь, у которой после запятой одна цифра.

    Для начала найдём ближайшее меньшее число, корень которого можно извлечь. Таковым является число 1. Корень из этого числа равен самому этому числу:

    Аналогично находим ближайшее бóльшее число, корень которого можно извлечь. Таковым является число 4. Корень из этого числа равен 2

    А √3 больше, чем √1 но меньше, чем √4. Запишем это в виде двойного неравенства:

    Точные значения корней √1 и √4 известны. Это числа 1 и 2

    Тогда очевидно, что значение корня √3 будет представлять собой десятичную дробь, потому что между числами 1 и 2 нет целых чисел.

    Для нахождения приближённого значения квадратного корня √3 будем проверять десятичные дроби, располагающиеся в интервале от 1 до 2, возводя их в квадрат. Делать это будем до тех пор пока не полýчим значение, максимально близкое к 3. Проверим к примеру дробь 1,1

    Получился результат 1,21, который не очень близок к подкореннóму выражению 3. Значит 1,1 не годится в качестве приближённого значения квадратного корня √3 , потому что оно малó.

    Проверим тогда дробь 1,8

    Получился результат 3,24, который близок к подкореннóму выражению, но превосходит его на 0,24. Значит 1,8 не годится в качестве приближенного значения корня √3 , потому что оно великó.

    Проверим тогда дробь 1,7

    Получился результат 2,89, который уже близок к подкореннóму выражению. Значит 1,7 и будет приближённым значением квадратного корня √3 . Напомним, что знак приближенного значения выглядит как ≈

    Значение 1,6 проверять не нужно, потому что в результате получится число 2,56 , которое дальше от трёх, чем значение 2,89. А значение 1,8, как было показано ранее, является уже большим.

    В данном случае мы нашли приближенное значение корня √3 с точностью до десятых. Значение можно получить ещё более точно. Для этого его следует находить с точностью до сотых.

    Чтобы найти значение с точностью до сотых проверим десятичные дроби в интервале от 1,7 до 1,8

    Проверим дробь 1,74

    Получился результат 3,0276 , который близок к подкореннóму выражению, но превосходит его на 0,0276 . Значит значение 1,74 великó для корня √3 .

    Проверим тогда дробь 1,73

    Получился результат 2,9929 , который близок к подкореннóму выражению √3 . Значит 1,73 будет приближённым значением квадратного корня √3 с точностью до сотых.

    Процесс нахождения приближённого значения квадратного корня продолжается бесконечно. Так, корень √3 можно находить с точностью до тысячных, десятитысячных и так далее:

    √3 = 1,732 (вычислено с точностью до тысячных)

    √3 = 1,7320 (вычислено с точностью до десятитысячных)

    √3 = 1,73205 (вычислено с точностью до ста тысячных).

    Ещё квадратный корень можно извлечь с точностью до целых. Приближённое значение квадратного корня √3 с точностью до целых равно единице:

    Значение 2 будет слишком большим, поскольку при возведении этого числа во вторую степень получается число 4, которое больше подкоренного выражения. Нас же интересуют значения, которые при возведении во вторую степень равны подкореннóму выражению или максимально близки к нему, но не превосходят его.

    В зависимости от решаемой задачи допускается находить значение, вторая степень которого больше подкоренного выражения. Это значение называют приближённым значением квадратного корня с избытком. Поговорим об этом подробнее.

    Приближенное значение квадратного корня с недостатком или избытком

    Иногда можно встретить задание, в котором требуется найти приближённое значение корня с недостатком или избытком.

    В предыдущей теме мы нашли приближённое значение корня √3 с точностью до десятых с недостатком. Недостаток понимается в том смысле, что до значения 3 нам недоставало ещё некоторых частей. Так, найдя приближённое значение √3 с точностью до десятых, мы получили 1,7. Это значение является значением с недостатком, поскольку при возведении этого числа во вторую степень полýчим результат 2,89 . Этому результату недостаёт ещё 0,11 чтобы получить число 3. То есть, 2,89 + 0,11 = 3.

    С избытком же называют приближённые значения, которые при возведении во вторую степень дают результат, который превосходит подкореннóе выражение. Так, вычисляя корень √3 приближённо, мы проверили значение 1,8. Это значение является приближённым значением корня √3 с точностью до десятых с избытком, поскольку при возведении 1,8 во вторую степень, получаем число 3,24 . Этот результат превосходит подкореннóе выражение на 0,24 . То есть 3,24 − 3 = 0,24 .

    Приближённое значение квадратного корня √3 с точностью до целых тоже был найден с недостатком:

    Это потому что при возведении единицы в квадрат получаем единицу. То есть до числа 3 недостаёт ещё 2.

    Приближённое значение квадратного корня √3 с точностью до целых можно найти и с избытком. Тогда этот корень приближённо будет равен 2

    Это потому что при возведении числа 2 в квадрат получаем 4. Число 4 превосходит подкореннóе выражение 3 на единицу. Извлекая приближённо квадратный корень с избытком желательно уточнять, что корень извлечен именно с избытком:

    Потому что приближённое значение чаще всего ищется с недостатком, чем с избытком.

    Дополнительно следует упомянуть, что в некоторых учебниках словосочетания «с точностью до целых», «с точностью до десятых», с «точностью до сотых» , заменяют на словосочетания «с точностью до 1» , «с точностью до 0,1» , «с точностью до 0,01» соответственно.

    Так, если в задании сказано извлечь квадратный корень из числа 5 с точностью до 0,01, то это значит что корень следует извлекать приближённо с точностью до сотых:

    Пример 2. Извлечь квадратный корень из числа 51 с точностью до 1

    Пример 3. Извлечь квадратный корень из числа 51 с точностью до 0,1

    Пример 4. Извлечь квадратный корень из числа 51 с точностью до 0,01

    Границы, в пределах которых располагаются корни

    Если исходное число принадлежит промежутку [1; 100], то квадратный корень из этого исходного числа будет принадлежать промежутку [1; 10].

    Например, пусть исходным числом будет 64 . Данное число принадлежит промежутку [1; 100] . Сразу делаем вывод, что квадратный корень из числа 64 будет принадлежать промежутку [1; 10] . Теперь вспоминаем таблицу умножения. Какое перемножение двух одинаковых сомножителей даёт в результате 64 ? Ясно, что перемножение 8 × 8 , а это есть 8 2 = 64 . Значит квадратный корень из числа 64 есть 8

    Пример 2. Извлечь квадратный корень из числа 49

    Число 49 принадлежит промежутку [1; 100] . Значит квадратный корень будет принадлежать промежутку [1; 10] . Этим корнем будет число 7 , поскольку 7 2 = 49

    Пример 2. Извлечь квадратный корень из числа 1

    Число 1 принадлежит промежутку [1; 100] . Значит квадратный корень будет принадлежать промежутку [1; 10] . Этим корнем будет число 1, поскольку 1 2 = 1

    Пример 3. Извлечь квадратный корень из числа 100

    Число 100 принадлежит промежутку [1; 100] . Значит квадратный корень будет принадлежать промежутку [1; 10] . Этим корнем будет число 10, поскольку 10 2 = 100

    Понятно, что промежуток [1; 100] содержит ещё и числа, квадратные корни из которых не извлекаются. Для таких чисел корень нужно извлекать приближённо. Тем не менее, приближённый корень тоже будет располагаться в пределах промежутка [1; 10] .

    Например, извлечём квадратный корень из числа 37 . Нет целого числа, вторая степень которого была бы равна 37 . Поэтому извлекать квадратный корень следует приближённо. Извлечём его к примеру с точностью до сотых:

    Для облегчения можно находить ближайшее меньшее число, корень из которого извлекается. Таковым в данном примере было число 36 . Квадратный корень из него равен 6 . И далее отталкиваясь от числа 6 , можно находить приближённое значение корня √37 , проверяя различные десятичные дроби, целая часть которых равна 6 .

    Квадраты чисел от 1 до 10 обязательно нужно знать наизусть. Ниже представлены эти квадраты:

    1 2 = 1
    2 2 = 4
    3 2 = 9
    4 2 = 16
    5 2 = 25
    6 2 = 36
    7 2 = 49
    8 2 = 64
    9 2 = 81
    10 2 = 100

    И обратно, следует знать значения квадратных корней этих квадратов:

    Если к любому числу от 1 до 10 в конце дописать ноль (или несколько нулей), и затем возвести это число во вторую степень, то в полученном числе будет в два раза больше нулей.

    Например, 6 2 = 36 . Допишем к числу 6 один ноль, полýчим 60 . Возведём число 60 во вторую степень, полýчим 3600

    А если к числу 6 дописать два нуля, и возвести это число во вторую степень, то полýчим число, в котором четыре нуля. То есть в два раза больше нулей:

    Тогда можно сделать следующий вывод:

    Если исходное число содержит знакомый нам квадрат и чётное количество нулей, то можно извлечь квадратный корень из этого числа. Для этого следует извлечь корень из знакомого нам квадрата и затем записать половину количества нулей из исходного числа.

    Например, извлечём квадратный корень из числа 900 . Видим, что в данном числе есть знакомый нам квадрат 9 . Извлекаем из него корень, получаем 3

    Теперь из исходного числа записываем половину от количества нулей. В исходном числе 900 содержится два нуля. Половина этого количества нулей есть один ноль. Записываем его в ответе после цифры 3

    Пример 2. Извлечём квадратный корень из числа 90000

    Здесь опять же имеется знакомый нам квадрат 9 и чётное количество нулей. Извлекаем корень из числа 9 и записываем половину от количества нулей. В исходном числе содержится четыре нуля. Половиной же этого количества нулей будет два нуля:

    Пример 3. Извлечем квадратный корень из числа 36000000

    Здесь имеется знакомый нам квадрат 36 и чётное количество нулей. Извлекаем корень из числа 36 и записываем половину от количества нулей. В исходном числе шесть нулей. Половиной же будет три нуля:

    Пример 4. Извлечем квадратный корень из числа 2500

    Здесь имеется знакомый нам квадрат 25 и чётное количество нулей. Извлекаем корень из числа 25 и записываем половину от количества нулей. В исходном числе два нуля. Половиной же будет один ноль:

    Если подкореннóе число увеличить (или уменьшить) в 100, 10000 то корень увеличится (или уменьшится) в 10, 100 раз соответственно.

    Например, . Если увеличим подкореннóе число в 100 раз, то квадратный корень увеличится в 10 раз:

    И наоборот, если в равенстве уменьшим подкореннóе число в 100 раз, то квадратный корень уменьшится в 10 раз:

    Пример 2. Увеличим в равенстве подкореннóе число в 10000, тогда квадратный корень 70 увеличиться в 100 раз

    Пример 3. Уменьшим в равенстве подкореннóе число в 100 раз, тогда квадратный корень 70 уменьшится в 10 раз

    Эта закономерность позволяет извлечь квадратный корень из десятичной дроби, если в данной дроби после запятой содéржатся две цифры, и эти две цифры образуют знакомый нам квадрат. В таких случаях данную десятичную дробь следует умножить на 100 . Затем извлечь квадратный корень из получившегося числа и уменьшить подкореннóе число в сто раз.

    Например, извлечём квадратный корень из числа 0,25 . В данной десятичной дроби после запятой содержатся две цифры и эти две цифры образуют знакомый нам квадрат 25.

    Умнóжим десятичную дробь 0,25 на 100, полýчим 25. А из числа 25 квадратный корень извлекается легко:

    Но нам изначально нужно было извлечь корень из 0,25, а не из 25. Чтобы исправить ситуацию, вернём нашу десятичную дробь. Если в равенстве подкореннóе число уменьшить в 100 раз, то полýчим под корнем 0,25 и соответственно ответ уменьшится в 10 раз:

    Обычно в таких случаях достаточно уметь передвигáть запятую. Потому что сдвинуть в числе запятую вправо на две цифры это всё равно что умножить это число на 100 .

    В предыдущем примере в подкоренном числе 0,25 можно было сдвинуть запятую вправо на две цифры, а в полученном ответе сдвинуть её влево на одну цифру.

    Например, извлечем корень из числа 0,81. Мысленно передвинем запятую вправо на две цифры, полýчим 81. Теперь извлечём квадратный корень из числа 81, полýчим ответ 9. В ответе 9 передвинем запятую влево на одну цифру, полýчим 0,9. Значит, .

    Это правило работает и в ситуации, когда после запятой содержатся четыре цифры и эти цифры образуют знакомый нам квадрат.

    Например, десятичная дробь 0,1225 содержит после запятой четыре цифры. Эти четыре цифры образуют число 1225 , квадратный корень из которого равен 35 .

    Тогда можно извлечь квадратный корень и из 0,1225 . Умнóжим данную десятичную дробь на 10000 , полýчим 1225 . Из числа 1225 квадратный корень можно извлечь с помощью таблицы квадратов:

    Но нам изначально нужно было извлечь корень из 0,1225 , а не из 1225 . Чтобы исправить ситуацию, в равенстве подкореннóе число уменьшим в 10000 раз. В результате под корнем образуется десятичная дробь 0,1225 , а правая часть уменьшится в 100 раз

    Эта же закономерность будет работать и при извлечении корней из дробей вида 12,25 . Если цифры из которых состоит десятичная дробь образуют знакомый нам квадрат, при этом после запятой содержится чётное количество цифр, то можно извлечь корень из этой десятичной дроби.

    Умнóжим десятичную дробь 12,25 на 100 , полýчим 1225 . Извлечём корень из числа 1225

    Теперь в равенстве уменьшим подкореннóе число в 100 раз. В результате под корнем образуется число 12,25 , и соответственно ответ уменьшится в 10 раз

    Если исходное число принадлежит промежутку [100; 10000], то квадратный корень из этого исходного числа будет принадлежать промежутку [10; 100].

    В этом случае применяется таблица квадратов:

    Например, пусть исходным числом будет 576. Данное число принадлежит промежутку [100; 10000] . Сразу делаем вывод, что квадратный корень из числа 576 будет принадлежать промежутку [10; 100] . Теперь открываем таблицу квадратов и смотрим какое число во второй степени равно 576

    Видим, что это число 24. Значит .

    Пример 2. Извлечь квадратный корень из числа 432 .

    Число 432 принадлежит промежутку [100; 10000] . Значит квадратный корень следует искать в промежутке [10; 100] . Открываем таблицу квадратов и смотрим какое число во второй степени равно 432. Обнаруживаем, что число 432 в таблице квадратов отсутствует. В этом случае квадратный корень следует искать приближённо.

    Извлечем квадратный корень из числа 432 с точностью до десятых.

    В таблице квадратов ближайшее меньшее число к 432 это число 400. Квадратный корень из него равен 20. Отталкиваясь от числа 20, будем проверять различные десятичные дроби, целая часть которых равна 20.

    Проверим, например, число 20,8. Для этого возведём его в квадрат:

    Получилось число 432,64 которое превосходит исходное число 432 на 0,64. Видим, что значение 20,8 великó для корня √432 . Проверим тогда значение 20,7

    Значение 20,7 годится в качестве корня, поскольку в результате возведения этого числа в квадрат получается число 428,49 , которое меньше исходного числа 432 , но близко к нему. Значит √432 ≈ 20,7 .

    Необязательно запоминать промежутки чтобы узнать в каких границах располагается корень. Можно воспользоваться методом нахождения ближайших квадратов с чётным количеством нулей на конце.

    Например, извлечём корень из числа 4225 . Нам известен ближайший меньший квадрат 3600 , и ближайший больший квадрат 4900

    Извлечём квадратные корни из чисел 3600 и 4900. Это числа 60 и 70 соответственно:

    Тогда можно понять, что квадратный корень из числа 4225 располагается между числами 60 и 70 . Можно даже найти его методом подбора. Корни 60 и 70 исключаем сразу, поскольку это корни чисел 3600 и 4900 . Затем можно проверить, например, корень 64 . Возведём его в квадрат (или умнóжим данное число само на себя)

    Корень 64 не годится. Проверим корень 65

    Получается 4225. Значит 65 является корнем числа 4225

    Тождественные преобразования с квадратными корнями

    Над квадратными корнями можно выполнять различные тождественные преобразования, тем самым облегчая их вычисление. Рассмотрим некоторые из этих преобразований.

    Квадратный корень из произведения

    Квадратный корень из произведения это выражение вида , где a и b некоторые числа.

    Например, выражение является квадратным корнем из произведения чисел 4 и 9.

    Чтобы извлечь такой квадратный корень, нужно по отдельности извлечь квадратные корни из множителей 4 и 9, представив выражение в виде произведения корней . Вычислив по отдельности эти корни полýчим произведение 2 × 3 , которое равно 6

    Конечно, можно не прибегать к таким манипуляциям, а вычислить сначала подкореннóе выражение 4 × 9 , которое равно 36 . Затем извлечь квадратный корень из числа 36

    Но при извлечении квадратных корней из больших чисел это правило может оказаться весьма полезным.

    Допустим, потребовалось извлечь квадратный корень из числа 144. Этот корень легко определяется с помощью таблицы квадратов — он равен 12

    Но предстáвим, что таблицы квадратов под рукой не оказалось. В этом случае число 144 можно разложить на простые множители. Затем из этих простых множителей составить числа, квадратные корни из которых извлекаются.

    Итак, разлóжим число 144 на простые множители:

    Получили следующее разложение:

    В разложéнии содержатся четыре двойки и две тройки. При этом все числа, входящие в разложение, перемнóжены. Это позволяет предстáвить произведения одинаковых сомножителей в виде степени с показателем 2.

    Тогда четыре двойки можно заменить на запись 2 2 × 2 2 , а две тройки заменить на 3 2

    В результате будем иметь следующее разложение:

    Теперь можно извлекáть квадратный корень из разложения числа 144

    Применим правило извлечения квадратного корня из произведения:

    Ранее было сказано, что если подкореннóе выражение возведенó во вторую степень, то такой квадратный корень равен модулю из подкореннóго выражения.

    Тогда получится произведение 2 × 2 × 3 , которое равно 12

    Простые множители представляют в виде степени для удобства и короткой записи. Допускается также записывать их под кóрнем как есть, чтобы впоследствии перемнóжив их, получить новые сомножители.

    Так, разложив число 144 на простые множители, мы получили разложение 2 × 2 × 2 × 2 × 3 × 3 . Это разложение можно записать под кóрнем как есть:

    затем перемнóжить некоторые сомножители так, чтобы получились числа, квадратные корни из которых извлекаются. В данном случае можно дважды перемнóжить две двойки и один раз перемнóжить две тройки:

    Затем применить правило извлечения квадратного корня из произведения и получить окончательный ответ:

    С помощью правила извлечения квадратного корня из произведения можно извлекать корень и из других больших чисел. В том числе, из тех чисел, которых нет в таблице квадратов.

    Например, извлечём квадратный корень из числа 13456 . Этого числа нет в таблице квадратов, поэтому воспользуемся правилом извлечения квадратного корня из произведения, предварительно разложив число 13456 на простые множители.

    Итак, разложим число 13456 на простые множители:

    В разложении имеются четыре двойки и два числа 29. Двойки дважды предстáвим как 2 2 . А два числа 29 предстáвим как 29 2 . В результате полýчим следующее разложение числа 13456

    Теперь будем извлекать квадратный корень из разложения числа 13456

    Итак, если a ≥ 0 и b ≥ 0 , то . То есть корень из произведения неотрицательных множителей равен произведению корней из этих множителей.

    Докажем равенство . Для этого воспользуемся определением квадратного корня.

    Согласно определению, квадратным корня из числа a есть число b , при котором выполняется равенство b 2 = a .

    В нашем случае нужно удостовериться, что правая часть равенства при возведении во вторую степень даст в результате подкореннóе выражение левой части, то есть выражение ab .

    Итак, выпишем правую часть равенства и возведём ее во вторую степень:

    Теперь воспользуемся правилом возведения в степень произведения. Согласно этому правилу, каждый множитель данного произведения нужно возвести в указанную степень:

    Ранее было сказано, что если выражение вида возвести во вторую степень, то получится подкореннóе выражение. Применим это правило. Тогда полýчим ab . А это есть подкореннóе выражение квадратного корня

    Значит равенство справедливо, поскольку при возведéнии правой части во вторую степень, получается подкореннóе выражение левой части.

    Правило извлечения квадратного корня из произведения работает и в случае, если под кóрнем располагается более двух множителей. То есть справедливым будет следующее равенство:

    , при a ≥ 0 и b ≥ 0, c ≥ 0.

    Пример 1. Найти значение квадратного корня

    Запишем корень в виде произведения корней, извлечём их, затем найдём значение полученного произведения:

    Пример 2. Найти значение квадратного корня

    Предстáвим число 250 в виде произведения чисел 25 и 10 . Делать это будем под знáком корня:

    Теперь под кóрнем образовалось два одинаковых множителя 10 и 10. Перемнóжим их, полýчим 100

    Далее применяем правило извлечения квадратного кóрня из произведения и получáем окончательный ответ:

    Пример 3. Найти значение квадратного корня

    Воспользуемся правилом возведения степени в степень. Степень 11 4 предстáвим как (11 2 ) 2 .

    Теперь воспользуемся правилом извлечения квадратного кóрня из квадрата числа:

    В нашем случае квадратный корень из числа (11 2 ) 2 будет равен 11 2 . Говоря простым языком, внешний показатель степени 2 исчезнет, а внутренний останется:

    Далее возводим число 11 во вторую степень и получаем окончательный ответ:

    Этот пример также можно решить, воспользовавшись правилом извлечения квадратного корня из произведения. Для этого подкореннóе выражение 11 4 нужно записать в виде произведения 11 2 × 11 2 . Затем извлечь квадратный корень из этого произведения:

    Пример 4. Найти значение квадратного корня

    Перепишем степень 3 4 в виде (3 2 ) 2 , а степень 5 6 в виде (5 3 ) 2

    Далее используем правило извлечения квадратного кóрня из произведения:

    Далее используем правило извлечения квадратного кóрня из квадрата числа:

    Вычислим произведение получившихся степеней и полýчим окончательный ответ:

    Сомножители, находящиеся под корнем, могут быть десятичными дробями. Например, извлечём квадратный корень из произведения

    Запишем корень в виде произведения корней, извлечём их, затем найдём значение полученного произведения:

    Пример 6. Найти значение квадратного корня

    Пример 7. Найти значение квадратного корня

    Если первый сомножитель умножить на число n , а второй сомножитель разделить на это число n , то произведение не изменится.

    Например, произведение 8 × 4 равно 32

    Умнóжим сомножитель 8 скажем на число 2 , а сомножитель 4 раздéлим на это же число 2. Тогда получится произведение 16 × 2 , которое тоже равно 32 .

    Это свойство полезно при решении некоторых задач на извлечение квадратных корней. Сомножители подкореннóго выражения можно умнóжить и разделить так, чтобы корни из них извлекались.

    Например, извлечём квадратный корень из произведения . Если сразу воспользоваться правилом извлечения квадратного корня из произведения, то не полýчится извлечь корни √1,6 и √90, потому что они не извлекаются.

    Проанализировав подкореннóе выражение 1,6 × 90 , можно заметить, что если первый сомножитель 1,6 умножить на 10 , а второй сомножитель 90 разделить на 10 , то полýчится произведение 16 × 9 . Из такого произведения квадратный корень можно извлечь, пользуясь правилом извлечения квадратного корня из произведения.

    Запишем полное решение данного примера:

    Процесс умножения и деления можно выполнять в уме. Также можно пропустить подробную запись извлечения квадратного корня из каждого сомножителя. Тогда решение станóвится короче:

    Пример 9. Найти значение квадратного корня

    Умнóжим первый сомножитель на 10 , а второй раздéлим на 10 . Тогда под кóрнем образуется произведение 36 × 0,04 , квадратный корень из которого извлекается:

    Если в равенстве поменять местами левую и правую часть, то полýчим равенство . Это преобразовáние позволяет упрощáть вычисление некоторых корней.

    Например, узнáем чему равно значение выражения .

    Квадратные корни из чисел 10 и 40 не извлекаются. Воспользуемся правилом , то есть заменим выражение из двух корней на выражение с одним корнем, под которым будет произведение из чисел 10 и 40

    Теперь найдём значение произведения, находящегося под корнем:

    А квадратный корень из числа 400 извлекается. Он равен 20

    Сомножители, располагáющиеся под корнем, можно расклáдывать на множители, группировáть, представлять в виде степени, а также перемножáть для получения новых сомножителей, корни из которых извлекаются.

    Например, найдём значение выражения .

    Воспользуемся правилом

    Сомножитель 32 это 2 5 . Предстáвим этот сомножитель как 2 × 2 4

    Перемнóжим сомножители 2 и 2, полýчим 4. А сомножитель 2 4 предстáвим в виде степени с показателем 2

    Теперь воспóльзуемся правилом и вычислим окончательный ответ:

    Пример 12. Найти значение выражения

    Воспользуемся правилом

    Сомножитель 8 это 2 × 2 × 2 , а сомножитель 98 это 2 × 7 × 7

    Теперь под кóрнем имеются четыре двойки и две семёрки. Четыре двойки можно записать как 2 2 × 2 2 , а две семёрки как 7 2

    Теперь воспользуемся правилом и вычислим окончательный ответ:

    Квадратный корень из дроби

    Квадратный корень вида равен дроби, в числителе которой квадратный корень из числа a , а в знаменателе — квадратный корень из числа b

    Например, квадратный корень из дроби равен дроби, в числителе которой квадратный корень из числа 4 , а в знаменателе — квадратный корень из числа 9

    Вычислим квадратные корни в числителе и знаменателе:

    Значит, квадратный корень из дроби равен .

    Докáжем, что равенство является верным.

    Возведём правую часть во вторую степень. Если в результате полýчим дробь , то это будет означать, что равенство верно:

    Пример 1. Извлечь квадратный корень

    Воспользуемся правилом извлечения квадратного корня из дроби:

    Пример 2. Извлечь квадратный корень

    Переведём подкореннóе выражение в неправильную дробь, затем воспользуемся правилом извлечения квадратного корня из дроби:

    Пример 3. Извлечь квадратный корень

    Квадратным корнем из числа 0,09 является 0,3 . Но можно извлечь этот корень, воспользовавшись правилом извлечения квадратного корня из дроби.

    Предстáвим подкоренное выражение в виде обыкновенной дроби. 0,09 это девять сотых:

    Теперь можно воспользоваться правилом извлечения квадратного корня из дроби:

    Пример 4. Найти значение выражения

    Извлечём корни из 0,09 и 0,25, затем сложим полученные результаты:

    Также можно воспользоваться правилом извлечения квадратного корня из дроби:

    В данном примере первый способ оказался проще и удобнее.

    Пример 5. Найти значение выражения

    Сначала вычислим квадратный корень, затем перемнóжим его с 10. Получившийся результат вычтем из 4

    Пример 6. Найти значение выражения

    Сначала найдём значение квадратного корня . Он равен 0,6 поскольку 0,6 2 = 0,36

    Теперь вычислим получившееся выражение. Согласно порядку действий, сначала надо выполнить умножение, затем сложение:

    Вынесение множителя из-под знака корня

    В некоторых задачах может быть полезным вынесение множителя из-под знака корня.

    Рассмотрим квадратный корень из произведения . Согласно правилу извлечения квадратного корня из произведения, нужно извлечь квадратный корень из каждого множителя данного произведения:

    В нашем примере квадратный корень извлекается только из множителя 4. Его мы извлечём, а выражение оставим без изменений:

    Это и есть вынесение множителя из-под знака корня.

    На практике подкореннóе выражение чаще всего требуется разложить на множители.

    Пример 2. Вынести множитель из-под знака корня в выражении

    Разлóжим подкореннóе выражение на множители 9 и 2. Тогда полýчим:

    Теперь воспользуемся правило извлечения квадратного корня из произведения. Извлечь можно только корень из множителя 9. Множитель 2 остáвим под кóрнем:

    Пример 3. Вынести множитель из-под знака корня в выражении

    Разлóжим подкореннóе выражение на множители 121 и 3. Тогда полýчим:

    Теперь воспользуемся правилом извлечения квадратного корня из произведения. Извлечь можно только корень из множителя 121. Выражение √3 остáвим под корнем:

    Пример 4. Вынести множитель из-под знака корня в выражении

    Воспользуемся правилом извлечения квадратного корня из произведения:

    Квадратный корень извлекается только из числа 121. Извлечём его, а выражение √15 оставим без изменений:

    Получается, что множитель 11 вынесен из-под знака корня. Вынесенный множитель принято записывать до выражения с корнем. Поменяем выражения √ 15 и 11 местами:

    Пример 5. Вынести множитель из-под знака корня в выражении

    Разлóжим подкореннóе выражение на множители 4 и 3

    Воспользуемся правилом извлечения квадратного корня из произведения:

    Извлечём корень из числа 4, а выражение √3 остáвим без изменений:

    Пример 6. Упростить выражение

    Предстáвим второе слагаемое в виде . А третье слагаемое предстáвим в виде

    Теперь в выражениях и вынесем множитель из-под знака корня:

    Во втором слагаемом перемнóжим числа −4 и 4 . Остальное перепишем без изменений:

    Замечáем, что получившемся выражении квадратный корень √3 является общим множителем. Вынесем его за скобки:

    Вычислим содержимое скобок, полýчим −1

    Если множителем является −1, то записывают только минус. Единица опускается. Тогда полýчим окончательный ответ −√3

    Внесение множителя под знак корня

    Рассмотрим следующее выражение:

    В этом выражении число 5 умнóжено на квадратный корень из числа 9. Найдём значение этого выражения.

    Сначала извлечём квадратный корень, затем перемнóжим его с числом 5.

    Квадратный корень из 9 равен 3. Перемнóжим его с числом 5. Тогда полýчим 15

    Число 5 в данном случае было множителем. Внесём этот множитель под знак корня. Но сделать это нужно таким образом, чтобы в результате наших действий значение исходного выражения не изменилось. Проще говоря, после внесения множителя 5 под знак корня, получившееся выражение по-прежнему должно быть равно 15.

    Значение выражения не изменится, если число 5 возвести во вторую степень и только тогда внести его под корень:

    Итак, если данó выражение , и нужно внести множитель a под знак корня, то надо возвести во вторую степень множитель a и внести его под корень:

    Пример 1. Внести множитель под знак корня в выражении

    Возведём число 7 во вторую степень и внесём его под знак корня:

    Пример 2. Внести множитель под знак корня в выражении

    Возведём число 10 во вторую степень и внесем его под знак корня:

    Пример 3. Внести множитель под знак корня в выражении

    Вносить под знак корня можно только положительный множитель. Ранее было сказано, что выражение вида не имеет смысла.

    Однако, если перед знаком кóрня располагается отрицательный множитель, то минус можно оставить за знáком корня, а самó число внести под знак корня.

    Пример 4. Внести множитель по знак корня в выражении

    В этом примере под знак корня внóсится только 3. Минус остаётся за знáком корня:

    Пример 5. Выполнить возведéние в степень в следующем выражении:

    Воспользуемся формулой квадрата суммы двух выражений:

    Роль переменной a в данном случае играет выражение √3 , роль переменной b — выражение √2 . Тогда полýчим:

    Теперь необходимо упростить получившееся выражение.

    Для выражений и применим правило . Ранее мы говорили, что если выражение вида возвести во вторую степень, то это выражение будет равно подкореннóму выражению a.

    А в выражении для множителей и применим правило . То есть заменим произведение корней на один общий корень:

    Приведём подобные слагаемые. В данном случае можно сложить слагаемые 3 и 2. А в слагаемом вычислить произведение, которое под кóрнем:


    источники:

    http://zaochnik.com/spravochnik/matematika/systems/reshenie-kvadratnyh-uravnenij/

    http://spacemath.xyz/kvadratnyj-koren/