Решение квадратных уравнений основные понятия

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Квадратные уравнения. Основные понятия

    Этот видеоурок доступен по абонементу

    У вас уже есть абонемент? Войти

    На занятии будет введено понятие квадратного уравнения, рассмотрены его два вида: полное и неполное. Отдельное внимание на уроке будет уделено разновидностям неполных квадратных уравнений, во второй половине занятия будет рассмотрено множество примеров.

    Урок по теме «Квадратные уравнения: основные понятия»
    методическая разработка по алгебре (8 класс)

    Разработка урока алгебры в 8 классе по теме «Квадратичные уравнения: основные понятия» УМК Мордкович.

    Скачать:

    ВложениеРазмер
    kvadratnye_uravneniya_osnovnye_ponyatiya_konspekt_uroka.docx336.7 КБ
    shema.docx25.34 КБ
    list_samootsenki.docx264.11 КБ

    Предварительный просмотр:

    Конспект урока по алгебре

    Тема: «Квадратные уравнения: основные понятия».

    УМК: Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений. – 12-е изд., стер. – М.: Мнемозина, 2010. – 215 с.

    образовательная: формирование понятий: квадратное уравнение, приведённое квадратное уравнение, неприведённое квадратное уравнение, полное квадратное уравнение, неполное квадратное уравнение, корень квадратного уравнения.

    развивающая: развитие умения анализировать учебный материал, развитие умения слушать и вступать в диалог.

    воспитательная: воспитание самостоятельности, внимательности, целеустремленности.

    • повторить понятие «квадратное уравнение»;
    • ввести понятие «приведенное квадратное уравнение»;
    • ввести понятие «неприведенное квадратное уравнение»;
    • ввести понятие «полное квадратное уравнение»;
    • ввести понятие «неполное квадратное уравнение»;
    • ввести понятие «корень квадратного уравнения»;
    • осуществить самоконтроль новых знаний.

    личностные: формирование самооценки на основе успешной деятельности;

    регулятивные: планирование действий в соответствии с поставленной задачей; умение оценивать правильность выполнения действия на уровне адекватной оценки;

    коммуникативные: формирование умения слушать и понимать речь других, вступать в диалог;

    познавательные: ориентироваться в системе знаний; составлять ответы на вопросы.

    Тип урока: комбинированный.

    Оборудование: раздаточный материал (карточки с заданиями для исследовательской работы, схема видов квадратного уравнения, лист самооценки).

    1. Организационный этап (1 мин).
    2. Итоги контрольной работы (4 мин).
    3. Подготовка учащихся к работе на основном этапе урока (1 мин).
    4. Этап усвоения знаний и способов действий (10 мин).
    5. Этап первичной проверки понимания изученного (18 мин).
    6. Этап рефлексии (2 мин).
    7. Подведение итогов урока (3 мин).
    8. Этап информации о домашнем задании (1 мин).

    Цель: создать благоприятный психологический настрой на работу.

    Форма работы: фронтальная.

    личностные: планирование учебного сотрудничества с учителем и сверстниками;

    регулятивные: прогнозирование своей деятельности;

    коммуникативные: умение слушать и вступать в диалог;

    познавательные: осознанное и произвольное построение речевого высказывания.

    Фиксация отсутствующих на уроке.

    Проверка подготовленности к уроку: наличие учебника, тетради, письменных принадлежностей.

    Дежурные называют отсутствующих

    Проверяют наличие учебных

    1. Итоги контрольной работы.

    Цель: обобщить знания по предыдущей теме.

    Форма работы: фронтальная.

    регулятивные: выделение и осознание того, что уже пройдено;

    коммуникативные: умение с достаточной полнотой и точностью выражать свои мысли;

    познавательные: поиск и выделение необходимой информации.

    Раздает тетради с проверенными контрольными работами.

    Предлагает выполнить около доски задание из контрольной работы, с которым справилось минимальное количество учащихся. (если такое есть)

    Записывают оценки, полученные за контрольную работы в дневник.

    Отвечают на поставленные учителем вопросы, выполняют задание по усмотрению учителя.

    1. Подготовка учащихся к работе на основном этапе урока.

    Цель: организовать целенаправленную работу учащихся, принятие ими цели урока.

    Форма работы: фронтальная.

    личностные: формирование интереса к новому материалу;

    коммуникативные: постановка вопросов;

    познавательные: самостоятельное выделение-формулирование познавательной цели.

    Ребята, прежде чем перейти к изучению новой темы, давайте вспомним, о чем мы говорили на прошлых уроках?

    Верно. А как вы думаете, существуют ли другие способы отыскания корней квадратного уравнения?

    На последующих уроках мы познакомимся с различными способами нахождения корней квадратного уравнения.

    Но сначала изучим основные понятия квадратных уравнений.

    Какова же цель нашего сегодняшнего урока?

    На прошлых уроках мы говорили о квадратных уравнениях, а именно учились их решать графическим способом.

    Высказывают свои предположения относительно данного вопроса.

    Изучить основные понятия, виды квадратных уравнений.

    1. Этап усвоения знаний и способов действий.

    Цель: обеспечение восприятия, осмысления и первичного запоминания детьми изучаемой темы: квадратные уравнения.

    Форма работы: фронтальная, парная.

    личностные: формирование математической компетентности;

    регулятивные: планирование, прогнозирование;

    коммуникативные: умение слушать и вступать в диалог;

    познавательные: поиск и выделение необходимой информации.

    Итак, мы определили цель сегодняшнего урока. Давайте сформулируем тему урока.

    Откройте тетради, запишите сегодняшнее число, классная работа и тему урока.

    Откройте учебник на с. 133 п. 24. Давайте поработаем с рабочим словарем и выясним, с какими понятиями мы должны познакомиться сегодня на уроке.

    С понятием квадратного уравнения мы с вами уже встречались, давайте вспомним какое уравнение называется квадратным?

    Верно. Как называются коэффициенты a, b, c?

    Почему коэффициент а не может быть равен нулю?

    Правильно. А многочлен – называют квадратным трехчленом.

    А теперь предлагаю провести небольшую исследовательскую работу в парах.

    Рассмотрите следующие группы квадратных уравнений. И с помощью учебника выясните по какому признаку разделены эти уравнения и как они называются:

    ;

    .

    + 3х + 7 = 0;

    .

    ;

    .

    ;

    ;

    .

    Верно. Давайте составим схему по выявленным нами видам квадратных уравнений.

    Какие виды квадратных уравнений нам встретились в данном задании?

    Какие квадратные уравнения называются приведенными/ неприведенными?

    Какие квадратные уравнения называются полными/ неполными?

    После составления схемы, раздается в печатном виде учащимся в качестве памятки.

    Виды квадратных уравнений мы определили, а теперь давайте выясним, что же называется корнем квадратного уравнения.

    Где мы с вами уже встречались с корнями квадратного уравнения?

    Как вы думаете что называется корнем квадратного уравнения?

    Хорошо, а теперь давайте сравним ваше определение с определением, которое приводит нам автор учебника.

    Близко ли то определение, которое дали мы и определение, приведенное автором?

    Как вы думаете сколько корней может иметь квадратное уравнение?

    Верно. Квадратное уравнение может иметь либо два корня, либо один корень, либо вообще не иметь корней.

    И на прошлых уроках мы выявляли этот факт с помощью построения графика функции.

    На следующих уроках мы научимся определять количество корней уравнения без графической иллюстрации.

    А теперь давайте выполним ряд упражнений на применение полученных знаний.

    Формулируют тему урока «Основные понятия квадратных уравнений».

    Открывают тетради, записывают дату, классная работа и тему урока.

    Открывают учебник на указанной странице.

    Сегодня на уроке мы должны познакомиться со следующими понятиями:

    1. Квадратное уравнение;

    2. Приведенное квадратное уравнение;

    3. Неприведенное квадратное уравнение;

    4. Квадратный трехчлен;

    5. Полное квадратное уравнение;

    6. Неполное квадратное уравнение;

    7. Корень квадратного уравнения;

    Уравнение вида , где a, b, c – некоторые действительные числа, причём

    называется квадратным уравнением.

    а — первый (старший коэффициент);

    b – второй коэффициент;

    с – свободный член.

    Если коэффициент , то уравнение не будет являться квадратным.

    Внимательно рассматривают предоставленные уравнения, выделяют признак, по которому они разделены на группы и с помощью учебника определяют виды этих уравнений.

    I. Приведенные квадратные уравнения т.к. коэффициент а = 1.

    (Полные т.к. коэффициенты a, b, c отличны от нуля).

    II. Неприведенные квадратные уравнения т.к. коэффициент а 1.

    (Полные т.к. коэффициенты a, b, c отличны от нуля).

    III. Полные квадратные уравнения т.к. коэффициенты b, c отличны от нуля.

    IV. Неполные квадратные уравнения т.к. присутствуют не все 3 слагаемых т.е. один из коэффициентов b, c равен нулю.

    Приведенные и неприведенные квадратные уравнения, полные и неполные квадратные уравнения.

    Квадратное уравнение является приведенным, если его коэффициент а = 1 и неприведенным, если коэффициент

    а 1.

    Квадратное уравнение является полным, если его коэффициенты b, c отличны от нуля и неполным, когда один из коэффициентов b, c равен нулю.


    источники:

    http://interneturok.ru/lesson/algebra/8-klass/kvadratnye-uravneniya-prodolzhenie/kvadratnye-uravneniya-osnovnye-ponyatiya

    http://nsportal.ru/shkola/algebra/library/2021/02/11/urok-po-teme-kvadratnye-uravneniya-osnovnye-ponyatiya