Решение квадратных уравнений с параметром видео

Методика обучения решению квадратных уравнений с параметром

Разделы: Математика

Решение задач с параметром вызывает затруднения у учащихся, так как практических заданий по данной теме в школьных учебниках недостаточно.

Цели разработки темы

  • формирование устойчивого интереса к познавательному процессу при изучении математики и оценка возможности овладения предметом с точки зрения дальнейшей перспективы;
  • обеспечение прочного и сознательного усвоения учащимися системой математических знаний, умений и навыков;
  • формирование качества мышления, характерного для математической деятельности и необходимые человеку для жизни в современном обществе;
  • выявление и развитие математических способностей учащихся.
  • Задачи разработки темы:
  • показать универсальные алгоритмы для решения квадратных уравнений с параметром;
  • научить приемам решения различного класса задач с параметром, способствовать овладению технических и интеллектуальных математических умений на уровне свободного их использования;
  • использование новых современных педагогических технологий обучения.

В математике параметр – это постоянная величина, выраженная буквой, сохраняющая свое постоянное значение лишь в условиях данной задачи (“параметр” с греческого “parametron” – отмеривающий)..

Если ставится задача для каждого значения параметра а из некоторого числового множества А решить уравнение F(х;а)= 0 относительно х, то это уравнение называют уравнением с переменной х и параметром а, а множество А – областью изменения параметра. Под областью определения уравнения F(х;а)=0 с параметром а понимаются такие системы значений х и а, при которых F(х;а) имеет смысл. Все значения параметра а, при которых F(х;а) не имеет смысла, включать в число значений параметра, при которых уравнение не имеет решений. Под областью изменения параметра (если не сделано специальных оговорок) берется множество всех действительных чисел, а задачу решения уравнения с параметром формулировать следующим образом: решить уравнение F(х;а)=0 (с переменной х и параметром а) – это значит на множестве действительных чисел решить семейство уравнений, получающихся из данного уравнения при всех действительных значениях параметра или установить, что решений нет.

В связи с тем, что выписать каждое уравнение из бесконечного семейства уравнений невозможно, но каждое уравнение семейства должно быть решено, следовательно, необходимо по некоторому целесообразному признаку разбить множество всех значений параметра на подмножества и решить затем заданное уравнение на каждом из этих подмножеств. Для разбиения множества значений параметра на подмножества, удобно пользоваться теми значениями параметра, при которых или при переходе через которые происходят качественные изменения уравнения. Такие значения параметра называются контрольными.

1. КВАДРАТНЫЕ УРАВНЕНИЯ С ПАРАМЕТРОМ

Задачи с параметрами можно разделить на два больших класса:

  • задачи, в которых необходимо при всех значениях параметра из некоторого множества решить уравнение;
  • задачи, в которых требуется найти все значения параметра, при каждом из которых решение уравнения удовлетворяют некоторым условиям.

В зависимости от типа задачи изменяется и вид ответа. В первом случае в решении и ответе должны быть рассмотрены все возможные значения параметров. Если хотя бы одно значение какого-либо параметра не исследовано, решение задачи не может быть признано полным.

Во втором случае в ответе перечисляются только те значения параметра, при которых выполнены условия задачи, а при решении подобных задач обычно решать заданное уравнение нет необходимости.

Уравнение вида Ах 2 + Вх + С= 0 , где А, В, С — выражения, зависимые от параметра, х – переменная — называется квадратным уравнением с параметром.

Уравнение вида ах 2 +вх+с=0, где , а, в, с – действительные числа, называют квадратным уравнением. D=в 2 -4ас называется дискриминантом квадратного уравнения (“дискриминант” по – латыни “различитель”).

В зависимости от значения дискриминанта возможны три случая:

D > 0. Данное квадратное уравнение имеет два действительных корня

D=0. Данное уравнение имеет корень двойной кратности

D 2 +2кх+с=0 со вторым коэффициентом (в=2к) четным, для нахождения корней удобно пользоваться формулами: , где D1= =к 2 -ас.

№ 1.1. Определите все значения параметра а при которых уравнение ах 2 +2(а+1)х+а+3=0 имеет два неравных корня.

Если а=0, то имеем 0·х 2 +2(0+1)х+0+3=0, 2х+3=0 — данное уравнение является линейным, х=-1,5 – единственный корень. Итак, а=0 не удовлетворяет условию задачи.

Если а?0, то уравнение имеет два различных корня, когда дискриминант >0.

Найдем=(а+1) 2 -а(а+3)=-а+1,-а+1>0, а 2 -4(а+1)х+4а+1=0 имеет один корень.

Если а=0, то имеем 2·0·х 2 -4(0+1)х+4·0+1=0, -4х+1=0 — данное уравнение является линейным, х=0,25 – единственный корень. Итак, а=0 удовлетворяет условию задачи.

Если а 0, то исходное уравнение является квадратным и имеет единственный корень при =0. Найдем =(2(a+1)) 2 -2a(4а+1) = -4a 2 +6a+4,4a 2 +6a+4=0, а1=2, а2=-0,5.

С учетом а=0, запишем ответ: а=-0,5, а=0, а=2.

№ 1.3. При каких значениях параметра а квадратное уравнение (5а-1)х 2 -(5а+2)х+3а-2=0 не имеет корней?

Если 5а-1=0,а=0,2, то имеем (5*0,2-1)х 2 -(5*0,2+2)х+3*0,2-2=0,

-3х-1,4=0 — данное уравнение является линейным, х = — единственный корень.

Итак, а=0,2 не удовлетворяет условию задачи.

Если а 0,2, то квадратное уравнение не имеет корней, если дискриминант квадратного уравнения D 2 -4(5a-1)(3а-2)=-35a 2 +72a-4,-35a 2 +72a-4 2 -72a+4>0, а1=2, а2=, (а-2)(а-)>0. С учетом а 0,2 ответ:

№ 1.4. Определите все значения параметра а при которых уравнение (2а-1)х 2 +ах+2а-3=0 имеет не более одного решения.

Если 2а-1=0,а=0,5, то имеем (2·0,5-1)х 2 +0,5·х+2·0,5-3=0, 0,5х-2=0 — данное уравнение является линейным, х=4 — единственный корень.

Итак, а=0,5 удовлетворяет условию задачи.

Если а 0,5, то квадратное уравнение имеет не более одного решения, если дискриминант квадратного уравнения D0.

Найдем D=а 2 -4(2a-1)(2а-3)=-15a 2 +32a-12, -15a 2 +32a-120,

15a 2 -32a+12?0, а1=, а2=, (а-)(а-) 0.

С учетом а 0,5, имеем .

С учетом а=0,5, запишем ответ: .

2. НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ С ПАРАМЕТРОМ.

Квадратное уравнение ах 2 +вх+с=0, где а 0 называется неполным, если хотя бы один из коэффициентов в или с равен 0.

Общая схема решения неполных квадратных уравнений с параметрами.

ах 2 =0, где а 0, в=0, с=0. Если а 0 ,то уравнение примет вид: х 2 =0, х=0.

Следовательно, уравнение имеет два совпадающих корня, равных нулю.

Если а=0, то х — любое действительное число.

ах 2 +с=0, где а0, в=0, с0. Если а0,то уравнение примет вид: следовательно, уравнение имеет корни, то они равны по абсолютной величине, но противоположны по знаку; 2 +вх=0, где а0, в0, с=0. Если а0,то уравнение примет вид: х(а+в)=0,или Если а=0, то вх=0, х=0.

№ 2.1. При каких значениях параметра а оба корня уравнения 2х 2 +(3а 2 -|а|)х-а 2 -3а=0 равны нулю?

Оба корня квадратного уравнения равны нулю, когда

№ 2.2. При каких значениях параметра а, корни уравнения 2 х 2 -(5а-3)х+1=0 равны по модулю, но противоположны по знаку?

Корни квадратного уравнения равны по модулю, но противоположны по знаку, когда 5а-3=0,а=0,6, но с учетом того, что имеем уравнение 2х 2 +1=0, х 2 =-0,5, которое корней не имеет. Ответ: .

№ 2.3. При каких значениях параметра а один из двух различных корней уравнения 3х 2 +х+2а-3=0 равен нулю?

Параметр должен удовлетворять условию: 2а-3=0, а=1,5. Ответ: а=1,5.

№ 2.4. При каких значениях параметра а корни уравнения 3х 2 +(а 2 -4а)х+а-1=0 равны по модулю, но противоположны по знаку?

Корни квадратного уравнения равны по модулю, но противоположны по знаку, когда:

Ответ: а=0.

№ 2.5. Решить относительно х неполное квадратное уравнение х 2 -2а+1=а.

х 2 =а+2а-1; х 2 =3а-1.

Если 3а-1=0, а= ,то уравнение имеет два совпадающих корня, равных нулю.

Если 3а-1 0. а>, то уравнение имеет два корня .

Ответ: при арешений нет; при а= х=0; при

3. ИССЛЕДОВАНИЕ И РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ С ПАРАМЕТРОМ.

№ 3.1. Исследовать и решить уравнение с параметром х 2 –2(а-1)х+2а+1=0.

Найдем дискриминант: D=(а — 1) 2 -2а – 1= а 2 -2а+1-2а-1= а 2 — 4а.

D > 0, а 2 — 4а > 0, а (а -4) > 0, а 4, то уравнение имеет два действительных корня ;

D =0, а (а-4)=0, а=0, то х=а-1, х=0-1, х=-1, а=4,то х=а-1, х=4-1, х=3;

D 2 +2(а+1)х+а–2= 0.

1) При а-1=0, а=1 имеем линейное уравнение 4х-1=0, х=– единственное решение.

2) При а 1 уравнение является квадратным, найдем дискриминант:

D1 = (а+1) 2 -(а–1)(2а-2)=а 2 +2а+1-а 2 +2а+а-2=5а-1.

D1>0. 5а-1>0, а>, а 1, то уравнение имеет два корня .

D1=0. 5а-1=0, а=, то уравнение имеет два равных корня .

х 2 +2х-8–ах+4а=0; х 2 +(2-а)х+4а-8=0. Уравнение является квадратным.

Найдем дискриминант: D=(2-а) 2 -4(4а-8)=4-4а+а 2 -16а+32= а 2 -20а+36.

D>0. а 2 20а+36>0, (а-18)(а -2)>0, а 18, то уравнение имеет два действительных корня .

D=0. (а-18)(а-2)=0, а=2, то ; а=18, то ;

D 2 равен 1, то уравнение принимает вид х 2 +px+q, где p и q — некоторые числа называется приведенным квадратным уравнением.

Теорема Виета: Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

ах 2 +вх+с=0, где х1 и х2 – корни квадратного уравнения, то

Справедливо утверждение, обратное теореме Виета.

Теорема: Если числа p и q таковы, что их сумма равна -p, а произведение равно q. то эти числа являются корнями уравнения х 2 +px+q=0.

№ 4.1. При каком значении параметра а сумма обратных величин действительных корней уравнения 2х 2 -2ах+а 2 -2=0 равна ?

Пусть х1 и х2 – корни квадратного уравнения, по условию .

По теореме Виета: Используя соотношения между корнями и условие задачи, имеем:

Найдем дискриминант квадратного уравнения:

Имеем: Ответ: при

№ 4.2. В уравнении (а 2 -5а+3)х 2 +(3а-1)х+2=0 определите а так, чтобы один из корней был вдвое больше другого.

Пусть х1 и х2 – корни квадратного уравнения, по условию х1 =2 х2. Заметим, что кратное сравнение выполняется только для положительных чисел.

По теореме Виета и условию задачи имеем систему:

Составим и решим уравнение:

Можно вычислить дискриминант данного уравнения, а затем проверить, удовлетворяет ли данное значение параметра а условию, что дискриминант неотрицателен, а так же, что корни положительны. Однако в данной задаче значительно проще сделать проверку, подставив это значение а в исходное уравнение.

При Корни отрицательны и кратно не сравниваются, поэтому задача решений не имеет. Ответ: решений нет.

№ 4.3. Найти все значения параметра а, при которых квадратное уравнение (а+2)х 2 –ах-а=0 имеет два корня, расположенных на числовой прямой симметрично относительно точки х=1.

При а+2=0, а=-2, то 2х+2=0, х=-1 – единственное решение, следовательно данное значение а не удовлетворяет условию задачи.

При а-2. Пусть х1 и х2 – корни квадратного уравнения, по условию х1 =1-у, х2.=1+у, где у – некоторое действительное число.

По теореме Виета имеем:

Решим первое уравнение системы: 2(а+2)=а, а=-4.

Найдем дискриминант данного квадратного уравнения:

Данное значение а=-4 удовлетворяет полученным значениям. Ответ: а=-4.

Ответ: при а = — 4.

  1. ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА.
  2. Азаров А.И., Барвенов С.А., Федосенко В.С. Методы решения задач с параметрами. Минск; “Аверсэв”. 2005.
  3. Амелькин В. В., Рабцевич В. Л. Задачи с параметрами. Минск; “Асар”. 1996.
  4. Данкова И. Н., Бондаренко Т. Е., Емелина Л. Л., Плетнева О. К.Предпрофильная подготовка учащихся 9 классов по математике. Москва; “5 за знания”.2006.
  5. Литвиненко В. Н., Мордкович А. Г.. Практикум по элементарной математике. Москва; “Просвещение”.1991.
  6. Родионов Е. М. Решение задач с параметрами. Москва; “Русь – 90”. 1995.
  7. Студенецкая В. Н., Сагателова Л. С. Математика 8 – 9классы: сборник элективных курсов. Волгоград; “Учитель”. 2006.
  8. Шарыгин И. Ф. Решение задач. Москва; “Просвещение”. 1994.
  9. Шахмейстер А. Х. Уравнения и неравенства с параметрами. Санкт-Петербург; “Петроглиф”. 2006.

Квадратные уравнения с параметром

Уравнение называется квадратным, если имеет вид \(ax^2+bx+c=0,\) где \(a,b,c\) — любые числа \((a≠0)\). При этом надо быть внимательным, если \(a=0\), то уравнение будет линейным, а не квадратным. Поэтому, первым делом при решении квадратного уравнения с параметром, рекомендую смотреть на коэффициент при \(x^2\) и рассматривать 2 случая: \(a=0\) (линейное уравнение); \(a≠0\) (квадратное уравнение). Квадратное уравнение часто решается при помощи дискриминанта или теоремы Виета.

Исследование квадратного многочлена

Чтобы решить квадратное уравнение с параметром, нужно понять, при каких значениях параметра существуют корни, и найти их, выразив через параметр. Обычно это делается просто через анализ дискриминанта. (см. пример 1) Но иногда в задачах с параметром просят найти такие значения параметра, при которых корни принадлежат определенному числовому промежутку. Например:

  • Найдите такие значения параметра, чтобы оба корня были меньше некоторого числа \(γ\): \(x_1≤x_2 0)\); ветки параболы направлены вниз \((a 0\). Значит, между корнями функция принимает отрицательные значения, а вне этого отрезка – положительные. Так как наше число \(γ\) должно по условию лежать вне отрезка \((x_1,x_2)\), то \(f(γ)>0\).
  • \(a 0\). Этим условием мы накладываем ограничение, что наши корни должны лежать слева или справа от числа \(γ\).

В итоге получаем:

если \(a*f(γ) 0\), то \(γ∉(x_1,x_2)\).

Нам осталось наложить условие, чтобы наши корни были слева от числа \(γ\). Здесь нужно просто сравнить положение вершины нашей параболы \(x_0\) относительно \(γ\). Заметим, что вершина лежит между точками \(x_1\) и \(x_2\). Если \(x_0 0, \\x_0

При каких значениях параметра a уравнение $$a(a+3) x^2+(2a+6)x-3a-9=0$$ имеет более одного корня?

1 случай: Если \(a(a+3)=0\), то уравнение будет линейным. При \(a=0\) исходное уравнение превращается в \(6x-9=0\), корень которого \(x=1,5\). Таким образом, при \(a=0\) уравнение имеет один корень.
При \(a=-3\) получаем \(0*x^2+0*x-0=0\), корнями этого уравнения являются любые рациональные числа. Уравнение имеет бесконечное количество корней.

2 случай: Если \(a≠0; a≠-3\), то получим квадратное уравнение. При положительном дискриминанте уравнение будет иметь более одного корня: $$D>0$$ $$D/4=(a+3)^2+3a(a+3)^2>0$$ $$(a+3)^2 (3a+1)>0$$ $$a>-\frac<1><3>.$$ С учетом \(a≠0;\) \(a≠-3\), получим, что уравнение имеет два корня при \(a∈(-\frac<1><3>;0)∪(0;+∞)\). Объединив оба случая получим (внимательно прочитайте, что от нас требуется):

Найти все значения параметра a, при которых корни уравнения $$(a+1) x^2-(a^2+2a)x-a-1=0$$ принадлежат отрезку \([-2;2]\).

1 случай: Если \(a=-1\), то \(0*x^2-x+1-1=0\) отсюда \(x=0\). Это решение принадлежит \([-2;2]\).

2 случай: При \(a≠-1\), получаем квадратное уравнение, с условием, что все корни принадлежат \([-2;2]\). Для решения введем функцию \(f(x)=(a+1) x^2-(a^2+2a)x-a-1\) и запишем систему, которая задает требуемые условия:

Подставляем полученные выражения в систему:

Уравнения с параметром — алгоритмы и примеры решения

Общие сведения

Уравнением является любое математическое тождество или физический закон, в котором присутствуют неизвестные величины. Последние необходимо находить. Этот процесс называется поиском корней. Однако не во всех случаях у равенства с переменными бывают решения, а это также нужно доказать.

Корень — величина или диапазон, превращающие искомое выражение в верное равенство. Например, в 5s=10 переменная эквивалентна 2, поскольку только это значение позволяет получить верное тождество, то есть 5*2=10.

Примером диапазона или интервала решений является выражение следующего вида: 0/t=0. Его корнем может быть любое действительное число, кроме нуля. Записывается решение в таком виде: t ∈ (-inf;0)U (0;+inf), где «∈» — знак принадлежности, «-inf» и «inf» — минус и плюс бесконечно большие числа соответственно.

Параметром в уравнении называется некоторая величина, от которой зависит поведение равенства на определенном интервале. Следует отметить, что он также влияет на значение корня, когда входит с ним в различные арифметические операции: сложения, вычитания, умножения, деления, возведения в степень и так далее. Тождества такого типа называют также параметрическими. Далее необходимо разобрать классификацию уравнений.

Классификация уравнений

Уравнения делятся на определенные виды, от которых зависит выбор методики их решения. Они бывают следующими: алгебраическими, дифференциальными, функциональными, трансцендентными и тригонометрическими. Кроме того, все они могут содержать некоторую величину — параметр. Его часто обозначают литерой «р» или «а».

Алгебраический тип является наиболее простым, поскольку не содержит сложные элементы. Дифференциальные тождества с неизвестными — одни из самых сложных выражений с точки зрения алгоритма. Они бывают первого, второго, третьего, а также высших порядков. Для нахождения их корней необходимо знать правила дифференцирования и интегрирования.

Практически все функциональные уравнения содержат один или более параметров. Основное их отличие от остальных заключается в функции, которая задается сложным выражением. Последнее может включать несколько неизвестных и параметрических элементов. Примером такого тождества является функция Лапласа, содержащая интеграл обыкновенного типа, а также экспоненту.

К трансцендентным относятся выражения, содержащие показательную, логарифмическую и радикальную (знак корня). Последний тип — тригонометрические. Они содержат любое равенство, содержащее следующие функции: sin, cos, tg и ctg. Однако в математике встречаются также их производные: arcsin, arccos, arcctg, arctg и гиперболические тождества.

Специалисты рекомендуют освоить на начальных этапах обучения методики, позволяющие решать уравнения с параметром линейного типа. После этого можно переходить к более сложным тождествам — функциональным, трансцендентным и так далее.

Алгебраический вид

Алгебраические не содержат в своем составе сложных функций, но в них могут присутствовать компоненты со степенным показателем.

На основании последней характеристики они делятся на 5 типов:

  1. Линейные.
  2. Квадратные (квадратичные).
  3. Кубические.
  4. Биквадратные.
  5. Высших порядков.

Линейные — выражения с переменной, которая имеет только первую степень (равную единице). Если показатель эквивалентен двойке, то такое тождество называется квадратным. В математической интерпретации его еще называют квадратным трехчленом. Когда показатель при неизвестной эквивалентен тройке, тогда это равенство называется кубическим.

Наиболее сложными по своей структуре являются биквадратные (содержат 4 степень). Однако на этом виды линейных уравнений не заканчиваются, поскольку бывают равенства с более высокими показателями. Их называют уравнениями высших порядков. Кроме того, любые тождества могут объединяться в системы уравнений. Их особенностью являются общие решения.

Линейные и квадратичные

Линейное — это самое простое уравнение, которое имеет всего одно решение. Оно решается по следующей методике:

  1. Записывается искомое выражение.
  2. При необходимости раскрываются скобки и приводятся подобные элементы.
  3. Неизвестные (переменные) остаются в левой части тождества, а все константы (числа) — переносятся вправо.
  4. Правая часть сокращается на коэффициент при неизвестной.
  5. Записывается результат.
  6. Выполняется проверка посредством подстановки корня в исходное выражение.

Следует отметить, что линейное выражение с переменной может не иметь решений, поскольку иногда невозможно выполнить операцию сокращения. Например, 0t=85. Равенство не имеет корней, поскольку на нулевое значение делить нельзя, так как при этом получается пустое множество.

Следующим типом является уравнение квадратичной формы At 2 +Bt+C=0. Оно может иметь один или два решения. Однако бывают случаи, при которых корней нет вообще. Для получения результата вводится понятие дискриминанта «D=(-B)^2−4*А*С». Для решения следует воспользоваться следующим алгоритмом:

  1. Записать выражение.
  2. Выполнить при необходимости математические преобразования по раскрытию скобок и приведению подобных слагаемых.
  3. Вычислить значение D (D 0 — два решения).
  4. При D=0 формула корня имеет такой вид: t=-В/(2А).
  5. Если D>0, то решения определяются по следующим соотношениям: t1=[-В-D^(½)]/(2А) и t2=[-В+D^(½)]/(2А).
  6. Записать результат.
  7. Выполнить проверку по отсеиванию ложных корней.

Следует отметить, что ложный корень — значение переменной, полученное по соответствующей формуле, но при подстановке в исходное выражение не выполняет условие равенства нулевому значению.

Кроме того, нужно обратить внимание на типы квадратных уравнений. Они бывают полными и неполными. Первые содержат все коэффициенты (А, В и С), а во вторых — некоторые из них могут отсутствовать, кроме А, так как тогда тождество должно содержать вторую степень при неизвестной.

Неполные решаются методом разложения на множители. Например, «v 2 −81=0» раскладывается следующим образом (формула сокращенного умножения — разность квадратов): (v-9)(t+9)=0. Анализируя последнее равенство, можно сделать вывод о понижении степени. Корнями уравнения являются два значения, t1=-9 и t2=9.

Кубичеcкие и биквадрaтные

Кубические и биквадратные равенства с неизвестным рекомендуется решать при помощи замены переменной. Однако в некоторых случаях можно применить формулы понижения степени или разложения на множители. Иными словами, суть решения алгебраических уравнений, степень которых превышает двойку, сводится к ее понижению различными методами.

Замена переменной производится на другую неизвестную величину. В примере (t 3 −2)+2t 3 −4=0 можно ввести следующий элемент — v=t 3 −2. В результате этого получится равенство такого вида: v+2v=0. Оно решается очень просто:

  1. Приводятся подобные элементы: 3v=0.
  2. Находится корень: v=0.
  3. Приравнивается к выражению, которое заменяли: t 3 −2=0.
  4. Находится корень (один, поскольку у радикала нечетная степень): t=[2]^(1/3).
  5. Проверяется условие: 2^(1/3)^3−2+2*(2^(1/3)^3)-4=4−4=0 (истина).

Биквадратные тождества решаются таким же методом. Однако существует еще один способ — разложение на множители. Его необходимо разобрать на примере решения выражения «4m 4 −324=0». Решать нужно по такому алгоритму:

  1. Упростить (вынести четверку за скобки и сократить на нее): 4 (m 4 −81)=m 4 −81=0.
  2. Разложить на множители (разность квадратов): (m 2 −9)(m 2 +9)=(m-3)(m+3)(m 2 +9)=0/
  3. Решить три уравнения: m1=3, m2=-3, m3=-3 и m4=3.
  4. Результат: m1=-3 и m2=3.
  5. Проверка: 4*(-3)^4−324=0 (истинно) и 4*(3)^4−324=0 (истинно).

Каждый из методов решения выбирается в зависимости от самого уравнения. При чтении условия задачи необходимо определить способ решения. Последний должен быть простым и удобным, а главное — количество шагов решения должно быть минимальным, что существенно сказывается на затраченном времени при вычислениях. Далее нужно рассмотреть подробный алгоритм решения уравнения с параметром.

Пример решения

На основании изученного материала можно приступить к практике решения уравнения с параметром, которое имеет следующий вид: 2v 4 −32−4p-(v 2 +4)+(v-2)(v+2)-v 4 +16=-4, где р — некоторый параметр. Корни и величину р необходимо искать по следующему алгоритму:

  1. Записать равенство с неизвестным и параметром: 2v 4 −32−4p-(v 2 +4)+(v-2)(v+2)-v 4 +16=-4.
  2. Выполнить математические преобразования: 2v 4 −32−4p-v 2 +4+v 2 −4-v 4 +16+4=v 4 −16+4p+4=0.
  3. Ввести замену v 4 −16=m: m+4p+4=0.
  4. Вывести формулу нахождения параметра: р=-(m/4)-1.
  5. Подставить величину m: р=-1-(v 4 +16)/4.
  6. C учетом соотношения равенство будет иметь такой вид: v 4 −16+4[-(v 4 +16−4)/4]+4=-32+8=0 (корней нет, поскольку -24 4 −12=0.
  7. Корни: v1=[12]^(¼) и v2=-[12]^(¼).
  8. Отрицательного корня v2 не существует, поскольку показатель радикала — четное число.
  9. Результат: v1=[12]^(¼).
  10. Проверка: <[12]^(¼)>^4−16+4=16−16=0 (истина).

Следует отметить, что v2 — ложный корень, а также параметр p, равный какому-либо значению, превращает уравнение в пустое множество. Для проверки можно воспользоваться специальным приложением, которое называется онлайн-калькулятором.

Таким образом, уравнения с параметром являются наиболее сложными, поскольку необходимо искать их корни, а также некоторое значение, влияющее на логику выражения. Для их решения необходимо следовать специальному алгоритму, предложенному математиками.


источники:

http://sigma-center.ru/quadratic_equation_parametr

http://nauka.club/matematika/algebra/uravneniya-s-parametrom.html