Решение квадратных уравнений с помощью выделения квадрата двучлена

Тема урока: «Решение квадратных уравнений выделением квадрата двучлена». 8-й класс

Разделы: Математика

Класс: 8

Цели урока:

  • освоить способ выделения квадрата двучлена из квадратного трехчлена, заданного в стандартном виде; конструировать решения квадратного уравнения способом выделения квадрата двучлена;
  • воспитывать познавательную активность, чувства ответственности и товарищества, культуры общения;
  • развивать логическое мышление для сознательного восприятия учебного материала

Оборудование:

  • план,
  • проектор,
  • компьютерная презентация,
  • учебное пособие «Алгебра-8» под редакцией Теляковского С.А.,
  • дидактические материалы по алгебре для 8 класса (В. И. Жохов, Ю. Н. Макарычев, Н. Г. Миндюк),
  • таблицы устных упражнений,
  • карточки-задания,
  • исторические сведения,
  • стенгазета,
  • алгоритм решения квадрат­ного уравнения выделением квадрата двучлена, магнитофон.

I . Ориентировочно-мотивационный этап

Проверка домашнего задания через консультантов. Актуализация знаний.

Выполнение заданий творческого характера на доске.

1) (2 – 5х) 2 = 9 (Ответ: – 0,2; 1.)

2) х 2 – 4 | х | = 0,
| х | = а, а > 0,
а 2 – 4а = 0,
а(а – 4) = 0, а = 0 или а – 4 = 0,
а = 4,

| x | = 0, х = 0, | x | = 4, х = 4 или х = – 4. Ответ: – 4; 0; 4.

3) | 3x 2 + 5x – 4 | = 3x 2 + 4

3х 2 + 4 > 0 верно при любых значениях переменной х

а) 3х 2 + 5х – 4 = 3х 2 + 4, б) 3х 2 + 5х – 4 = – 3х 2 – 4,
5х = 8, х = 1,6 6х 2 + 5х = 0, х(6х + 5) = 0, х = 0, х = –
Устная работа. Теоретическая изюминка (презентация)

1) Какие уравнения вы знаете? (Линейные, квадратные)
2) Определение квадратного уравнения. Почему а ≠ 0?
3) Вспомните классификацию квадратных уравнений ( полные ,неполные , приведенные)
4) Какое уравнение называется неполным? Виды неполных квадратных уравнений.
5) Сколько корней имеет неполное квадратное уравнение каждого вида?
6) Д/м, стр. 23, 1,2 задание
7) (а + в) 2 = а 2 + 2ав + в 2 – квадрат суммы двух выражений . Замените * одночленом так, чтобы получившееся равенство было тождеством:
а) ( * + 2в ) 2 = а 2 + 4ав + 4в 2
б) (15 + * ) 2 = 225у 2 + 1 2х 3 у + 0,16х 6
в) (3а – 2,5в) 2 = 9а 2 + 6,25в 2 – *

II. Операционально-исполнительный этап

Определение приведенного квадратного уравнения:

Квадратное уравнение ах 2 + вх + с = 0 с первым коэффициентом а = 1 называется приведенным

1) Определите вид уравнения х 2 + 2х + 1= 0 и решите это уравнение

(х + 1) 2 = 0,
х + 1= 0, х = – 1.

– Каким способом вы решили?

2) Нельзя ли решить уравнение х 2 + 6х – 7 = 0 таким же способом? (Ответ учащихся: «Нужно выделить квадрат двучлена» )
– Сформулируйте учебную задачу нашего урока. (Ответ учащихся: «Учебная задача урока «Решение квадратного уравнения выделением квадрата двучлена» )
– Итак, мы определили задачу нашего урока: научиться решать квадратные уравнения выделением квадрата двучлена.

3) Выделите квадрат двучлена: х 2 + 6х – 7 = х 2 + 2х * 3 + 9 – 9 – 7 = (х + 3) 2 – 16

4) Решите уравнение

х 2 + 6х – 7 = 0,
(х + 3) 2 – 16 = 0, (х + 3) 2 = 16
х + 3 = 4 или х + 3 = – 4
х = 1 или х = – 7
Ответ: – 7; 1.

Проговаривание способа решения уравнения.

Алгоритм решения квадратных уравнений выделением квадрата двучлена (презентация)

а) определяем первое выражение;
б) находим второе выражение: выражение с переменной (т.е. удвоенное произведение двух выражений ) делим на удвоенное первое выражение
в) прибавим и отнимем квадрат второго выражения;
г) упростим выражения, выделив квадрат двучлена;
д) решаем как неполное квадратное уравнение.

5) Решите уравнение х 2 – 5х + 10 = 0,

х 2 – 2х* 5/2 + (5/2) 2 – (5/2) 2 + 10 = 0,
(х – 5/2 ) 2 = – 15/4, нет корней.

6) Ребята, как вы думаете, можно ли решить выделением квадрата двучлена следующее уравнение 2х 2 – 9х + 10 = 0, 5х 2 + 3х – 8 = 0? (Можно, но сначала надо разделить каждый член уравнения на 2 (5), так как а = 2 (а = 5))

а) х 2 – (9/2)х + 5 = 0, б) х 2 + (3/5)х – (8/5) = 0

Решите данные уравнения в парах.

(Проверка по образцу).

б) х 2 + 2х * 3/10 + 9/100 – 9/100 – 8/5 = 0,
(х + 3/10) 2 = 169/100,
| x + 3/10 | = 13/10,
х + 3/10 = 13/10 или х + 3/10 = –13/10,
х = 1 или х = – 1,6
Ответ: – 1,6; 1.

Проговаривание решения квадратного уравнения в парах.

Самостоятельная работа

а) х 2 – 4х + 4 = 0 , б) х 2 + 12х + 20 = 0
(х = 2) (х = – 2; х = – 10)

а) х 2 + 14х + 49 = 0, б) х 2 – 8х – 9 = 0
(х = – 7) (х = – 1; х = 9)

а) х 2 – х + = 0, б) 5y 2 – 6y + l = 0,
(х = ) (х = 1; х = )

а) у 2 – у + 1 = 0, б) 5х 2 – 8х + 3 = 0
(х = 2) (х = 1; х = 0,6 )

(Во время самостоятельной работы звучит классическая музыка) Взаимопроверка.
Учащиеся выставляют оценки карандашом.

Физминутка для глаз (компьютерная презентация)

7) При каком значении а уравнение х 2 + 12х + 36 = а имеет 2 корня, 1 корень, не имеет корней?
(х + 6) 2 = а при а > 0 , 2 корня ;
при а = 0, 1 корень;
при а 2 – 4х + 5 = m?
х 2 – 2х * 2 + 4 – 4 + 5 = m,
(х – 2) 2 + 1 = m,
(х – 2) 2 = m – 1,
при m > 1, 2 корня;
при m = 1, 1 корень.

9) Решите уравнение: у 2 – 4| y | – 96 = 0.
Пусть | y | = b, b > 0,
b 2 – 4b – 96 = 0,
b 2 – 2b* 2 + 4 – 4 – 96 = 0,
(b – 2) 2 = 100,
| b – 2 | = 10,
b – 2 = 10 или b – 2 = – 10,
b = 12 или b = – 8.
b = – 8 не удовлетворяет условию b > 0,
| у | = 12,
y = 12 или у = – 12.

Домашняя работа

№526 – обязательный уровень;
№528, С-24, №7 – повышенный уровень;

Творческая работа

а) Заполни «окошки» х 2 – 7х + 8 = (х – ∆) 2 + 8 – ∆ 2 2 и придумать самим такие задания.
б) Выделить квадрат двучлена из квадратного трехчлена ах 2 + вх + с = 0.

III. Рефлексивно-оценочный этап

– Что изучали на уроке?
– Как решали квадратные уравнения?
– Что вы знаете об истории возникновения квадратных уравнений?

Задачи на квадратные уравнения встречались уже в 499 году в Древней Индии. Часто они были в стихотворной форме. Вот одна из задач знаменитого индийского математика 12 века Бхаскары:

«Обезьянок резвых стая
Всласть поевши развлекалась,
Их в квадрате часть восьмая
На поляне забавлялась,
А 12 по лианам…
Стали прыгать, повисая,
Сколько было обезьянок,
Ты скажи мне, в этой стае?

Уже в то время он знал о двузначности корней квадратных уравнений (х/8) 2 + 12 = х.
Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанная в 1202 году итальянским математиком Леонардом Фибоначчи. И лишь в 17 веке , благодаря трудам Жирара, Декарта, Ньютона и других ученых , способ решения квадратных уравнений принимает современный вид , о котором мы с вами будем говорить на следующем уроке.

решение квадратных уравнений выделением квадрата двучлена. открытый урок
план-конспект урока по алгебре (8 класс) по теме

Конспект урока алгебры 8 класса по теме «Решение квадратных уравнений выделением квадрата двучлена» может быть использован при подготовке к уроку по данной теме.

Скачать:

ВложениеРазмер
reshenie_kvadratnykh_uravneniy_.otkrytyy_urok.docx20.78 КБ
reshenie_kvadratnykh_uravneniy_.otkrytyy_urok.docx20.78 КБ

Предварительный просмотр:

Решение квадратных уравнений

выделением квадрата двучлена

Цель образовательная : научить использовать способ

выделения квадрата двучлена для решения

полных квадратных уравнений.

Цель развивающая: развить исследовательские и познавательные способности учащихся, культуру математической речи, умение делать выводы.

Цель воспитательная : учить вниманию, последовательности, логическому мышлению, аккуратности.

— подготовка к уроку;

2) Проверка домашней работы.

3) Устная работа:

1. В перечисленных примерах укажите и назовите коэффициенты в квадратных уравнениях, неполных квадратных уравнениях и линейных уравнениях:

2. Решите уравнения, назовите корни:

г) 5х 2 -25х=0; х=0, х=5

д) х 2 +9=0; корней нет

ж) 3х 2 =27. х=3, х=-3

3. Вставьте пропущенные слагаемые и назовите формулы квадрата суммы или квадрата разности:

в) 16а 2 + … +25в 2 =(4а+5в) 2 .

4. Представьте выражение в виде удвоенного произведения переменной на число:

4) Подготовка к изучению новой темы :

записать на доске и в тетрадях общий вид квадратного уравнения и неполного квадратного уравнения с помощью букв:

ax 2 +bx+c=0; а,b,с некоторые числа

ах 2 +bх =0; с=0 (разложение на множители)

ах 2 +с=0; в=0 (извлечение квадратного корня)

Мы умеем решать неполные квадратные уравнения, а как решать полные квадратные уравнения, у которых три коэффициента отличны от нуля?

Сегодня мы познакомимся со способом решения таких уравнений – выделение квадрата двучлена и начнем с уравнений, в которых старший коэффициент при х 2 а=1. Такие уравнения называются приведенными квадратными уравнениями и записываются в виде букв:

x 2 +рx+g =0, где р,g числа

Решим приведенное квадратное уравнение

5) Изучение нового материала: (учитель )

представим левую часть уравнения в виде квадрата двучлена х 2 +2Х5х+5 2 — 5 2 +21 =0,

(ученики с помощью учителя)

х 2 +2Х3х+3 2 — 3 2 +8 =0,

х 2 -2Х2х+2 2 — 2 2 +3= 0,

х 2 +2Х2х+2 2 -2 2 +20=0,

Ответ: корней нет.

6) Закрепление изученного материала (самостоятельно с последующей проверкой, два ученика за крылом по желанию)

№524(а,б) а) х 2 -8х+15=0,

х 2 -2Х4х+4 2 -4 2 +15=0,

х 2 +2Х6х+6 2 -6 2 +20=0,

7) Подвести итог урока, поблагодарить и поставить оценки за урок .

8) Домашнее задание: п. ,№523а, 525г, 526а,в,г, 530

Предварительный просмотр:

Решение квадратных уравнений

выделением квадрата двучлена

Цель образовательная : научить использовать способ

выделения квадрата двучлена для решения

полных квадратных уравнений.

Цель развивающая: развить исследовательские и познавательные способности учащихся, культуру математической речи, умение делать выводы.

Цель воспитательная : учить вниманию, последовательности, логическому мышлению, аккуратности.

— подготовка к уроку;

2) Проверка домашней работы.

3) Устная работа:

1. В перечисленных примерах укажите и назовите коэффициенты в квадратных уравнениях, неполных квадратных уравнениях и линейных уравнениях:

2. Решите уравнения, назовите корни:

г) 5х 2 -25х=0; х=0, х=5

д) х 2 +9=0; корней нет

ж) 3х 2 =27. х=3, х=-3

3. Вставьте пропущенные слагаемые и назовите формулы квадрата суммы или квадрата разности:

в) 16а 2 + … +25в 2 =(4а+5в) 2 .

4. Представьте выражение в виде удвоенного произведения переменной на число:

4) Подготовка к изучению новой темы :

записать на доске и в тетрадях общий вид квадратного уравнения и неполного квадратного уравнения с помощью букв:

ax 2 +bx+c=0; а,b,с некоторые числа

ах 2 +bх =0; с=0 (разложение на множители)

ах 2 +с=0; в=0 (извлечение квадратного корня)

Мы умеем решать неполные квадратные уравнения, а как решать полные квадратные уравнения, у которых три коэффициента отличны от нуля?

Сегодня мы познакомимся со способом решения таких уравнений – выделение квадрата двучлена и начнем с уравнений, в которых старший коэффициент при х 2 а=1. Такие уравнения называются приведенными квадратными уравнениями и записываются в виде букв:

x 2 +рx+g =0, где р,g числа

Решим приведенное квадратное уравнение

5) Изучение нового материала: (учитель )

представим левую часть уравнения в виде квадрата двучлена х 2 +2Х5х+5 2 — 5 2 +21 =0,

(ученики с помощью учителя)

х 2 +2Х3х+3 2 — 3 2 +8 =0,

х 2 -2Х2х+2 2 — 2 2 +3= 0,

х 2 +2Х2х+2 2 -2 2 +20=0,

Ответ: корней нет.

6) Закрепление изученного материала (самостоятельно с последующей проверкой, два ученика за крылом по желанию)

№524(а,б) а) х 2 -8х+15=0,

х 2 -2Х4х+4 2 -4 2 +15=0,

х 2 +2Х6х+6 2 -6 2 +20=0,

7) Подвести итог урока, поблагодарить и поставить оценки за урок .

8) Домашнее задание: п. ,№523а, 525г, 526а,в,г, 530

По теме: методические разработки, презентации и конспекты

конспект открытого урока по алгебре для 8 класса «Решение квадратных уравнений различными способами» с применением ИКТ

систематизация, обобщение полученных ранее знаний, а также ознакомление с новыми способами решения квадратных уравнений.

Комбинированный урок по теме РЕШЕНИЕ КВАДРАТНОГО УРАВНЕНИЯ МЕТОДОМ ВЫДЕЛЕНИЯ КВАДРАТА ДВУЧЛЕНА

Непростая тема алгебры 8 класса «РЕШЕНИЕ КВАДРАТНОГО УРАВНЕНИЯ МЕТОДОМ ВЫДЕЛЕНИЯ КВАДРАТА ДВУЧЛЕНА» часто вызывает трудности у школьников. Хочу предложить свой вариант подхода к введению этой темы.

Открытый урок Тема урока: «Решение квадратных уравнений по формуле»

Тип урока: Урок закрепления знаний, комбинированный с элементами игры и кейс – технологий.Цели урока.-обучающие: закрепить и систематизировать знания о квадратных уравнениях в ходе в.

Конспект урока по теме «Решение квадратных уравнений выделением квадрата двучлена»

Цель данного урока — повторить понятие квадратного уравнения (полного, неполного, квадратного), закрепить метод решения квадратного уравнения с помощью выделения квадрата двучлена.

Выделение квадрата двучлена

Выделение квадрата двучлена.

Конспект урока по теме: квадратные уравнения. Решение квадратных уравнений.

Урок в 8 классе по теме Учитель математики: Папшева Ю.А. Тема урока: Квадратные уравнения. Ре.

Методические рекомендации к изучению темы: « Решение квадратных уравнений» с применением теоремы Виета для решения приведенного квадратного уравнения и полного квадратного уравнени

Решать квадратные уравнения учащимся приходится часто в старших классах, Решение иррациональных, показательных , логарифмических ,тригонометрических уравнений часто сводится к решени.

Решение квадратных уравнений с помощью выделения квадрата двучлена

Уравнениям вида , где а0, в школьном курсе математики придаётся большое значение. Анализируя работы учеников, можно прийти к выводу, что при решении квадратных уравнений учащиеся в 90% случаях используют формулу «дискриминанта», а на остальные 10% приходится графический способ, теорема Виета и с помощью разложения на множители. Многие ребята не знают другие приемы решения квадратных уравнений. Рассмотрим подробнее способы решения квадратных уравнений.

Решение квадратных уравнений с помощью выделения квадрата двучлена.

Рассмотрим на примере решение квадратного уравнения, в котором оба коэффициента при неизвестных и свободный член отличны от нуля. Такой способ решения квадратного уравнения называют выделением квадрата двучлена.

Рассмотрим уравнение

Разделив обе части этого уравнения на 7, получим равносильное ему приведенное квадратное уравнение . Выделим из трехчлена квадрат двучлена. Для этого разность представим в виде , прибавим к ней выражение и вычтем его. Получим .

Решая это уравнение получим два корня x=-, и x= 1.

Решение квадратных уравнений по формуле.

Умножим обе части уравнения

ах2 + bх + с = 0, а ≠ 0

на 4а и последовательно имеем:

4а2х2 + 4аbх + 4ас = 0,

((2ах)2 + 2ах • b + b2) — b2 + 4ac = 0,

(2ax + b)2 = b2 — 4ac,

2ax + b = ± √ b2 — 4ac,

2ax = — b ± √ b2 — 4ac,

Решение уравнений с использованием теоремы Виета. 4. СПОСОБ:

Как известно, приведенное квадратное уравнение имеет вид

Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если свободный член q приведенного уравнения (1) положителен (q 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p. Если р, то оба корня отрицательны, если р, то оба корня положительны.

б) Если свободный член q приведенного уравнения (1) отрицателен (q ), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p, или отрицателен, если p 0 .

Решение уравнений с использованием теоремы Виета (обратной) Справедлива теорема, обратная теореме Виета:

Если числа х1 и х2 таковы, что х1+х2 = — р, х1х2 = q, то х1 и х2 – корни квадратного уравнения х2 +рх + q = 0.

Эта теорема позволяет в ряде случаев находить корни квадратного уравнения без использования формулы корней.

Решение уравнений способом «переброски».

Рассмотрим квадратное уравнение ах2 + bх + с = 0, где а ≠ 0.

Умножая обе его части на а, получаем уравнениеа2х2 + аbх + ас = 0.

Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у2 + by + ас = 0,

равносильно данному. Его корни у1 и у2 найдем с помощью теоремы Виета.

Окончательно получаем х1 = у1/а и х1 = у2/а. При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Свойства коэффициентов квадратного уравнения.

А. Пусть дано квадратное уравнение ах2 + bх + с = 0, где а ≠ 0.

1) Если, а+ b + с = 0 (т. е. сумма коэффициентов равна нулю), то х1 = 1, х2 = с/а.

Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение

x2 + b/a • x + c/a = 0.

Согласно теореме Виета

По условию а – b + с = 0, откуда b = а + с. Таким образом,

x1 + x2 = — а + b/a= -1 – c/a,

т. е. х1 = -1 и х2 = c/a, что м требовалось доказать.

Б. Если второй коэффициент b = 2k – четное число, то формулу корней

В. Приведенное уравнение х2 + рх + q= 0

совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней

Формулу (3) особенно удобно использовать, когда р — четное число.

Графическое решение квадратного уравнения.

Если в уравнении х2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х2 = — px — q.

График первой зависимости — парабола, проходящая через начало координат. График второй зависимости – прямая. Возможны следующие случаи:

— прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

— прямая и парабола могут касаться (одна общая точка), т. е. уравнение имеет одно решение;

— прямая и парабола не имеют общих точек, т. е. квадратное уравнение не имеет корней.

Решение квадратных уравнений с помощью циркуля и линейки.

рафический способ решения квадратных уравнений с помощью параболы неудобен. Если строить параболу по точкам, то требуется много времени, и при этом степень точности получаемых результатов невелика.

Существует следующий способ нахождения корней квадратного уравнения ах2 + bх + с = 0с помощью циркуля и линейки

Допустим, что искомая окружность пересекает ось абсцисс в точках В(х1; 0 ) и D (х2; 0),где х1 и х2 — корни уравнения ах2 + bх + с = 0, и проходит через точки А(0; 1) и С(0; c/a) на оси ординат. Тогда по теореме о секущих имеем OB • OD = OA • OC, откуда OC = OB • OD/ OA= х1х2/ 1 = c/a.

ентр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому

1) построим точки S(-b/2а; (а+с)/2а) (центр окружности) и A(0; 1);

2) проведем окружность с радиусом SA;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

1) Радиус окружности больше ординаты центра (AS SK, или R a + c/2a), окружность пересекает ось Ох в двух точках (рис. 6,а) В(х1; 0) и D(х2; 0), где х1 и х2 — корни квадратного уравнения ах2 + bх + с = 0.

) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох (рис. 6,б) в точке В(х1; 0), где х1 — корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра

окружность не имеет общих точек с осью абсцисс (рис.6,в), в этом случае уравнение не имеет решения.

Решение квадратных уравнений с помощью номограммы.

Это старый и незаслуженно забыты способ решения квадратных уравнений, помещенный на с.83 (см. Четырехзначные математические таблицы. — М., Просвещение, 1990).

Таблица XXII. Номограмма для решения уравнения z2 + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициен-

там определить корни уравнения.

Криволинейная шкала номограммы построена

Полагая ОС = р, ED = q, ОЕ = а (все в см.), из

подобия треугольников САН и CDF получим пропорцию

откуда после подстановок и упрощений вытекает уравнение

z2 + pz + q = 0,причем буква z означает метку любой точки криволинейной шкалы.

Способ решения квадратных уравнений по теореме Безу.

При делении P(х) на х — в остатке может получиться лишь некоторое число r (если r = 0, то деление выполняется без остатка):P(x) = (x — ) Q (x) + r. (1)

Чтобы найти значение r, положим в тождестве (1) х = . При этом двучлен х — обращается в нуль, получаем, что P () = r.

Итак, доказано утверждение, называемое теоремой Безу.

Теорема 1 (Безу). Остаток от деления многочлена P(x) на двучлен х — равен P() (т. е. значению P(x) при х = ).

Если число является корнем многочлена P(x), то этот многочлен делится на х — без остатка.

Разделим р(х) на (х-1)

х-1=0; х=1, или х-3=0, х=3; Ответ: х1=2, х2=3.

Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств.

Однако, значение квадратных уравнений заключается не только в изяществе и краткости решения задач, хотя и это весьма существенно. Не менее важно и то, что в результате применения квадратных уравнений при решении задач не редко обнаруживаются новые детали, удается сделать интересные обобщения и внести уточнения, которые подсказываются анализом полученных формул и соотношений.

1. Четырехзначные математические таблицы для средней школы. Изд. 57-е. — М., Просвещение, 1990. С. 83.

2. Квадратичные функции, уравнения и неравенства. Пособие для учителя. — М., Просвещение, 1972.

3. Решение квадратного уравнения с помощью циркуля и линейки. — М., Квант, № 4/72. С. 34.

4. Сборник задач по алгебре и элементарным функциям. Пособие для учителя. Изд. 2-е. — М., Просвещение, 1970.


источники:

http://nsportal.ru/shkola/algebra/library/2013/11/26/reshenie-kvadratnykh-uravneniy-vydeleniem-kvadrata-dvuchlena

http://pandia.ru/text/81/411/38596.php