Решение квадратных уравнений урок 6 решите уравнение

Разработка уроков по теме: «Квадратные уравнения»

Разделы: Математика

Цель: Познакомить учащихся с квадратными уравнениями, дискриминантом, теоремой Виета.

Показать учащимся, как решаются квадратные уравнения различных видов.

Развивать внимание и логическое мышление учащихся.

Воспитывать аккуратность и четкость в записях учащихся.

  • Оргмомент.
  • Составление конспекта лекции.

Определение. Уравнение вида ax 2 +bx+c=0, где а, b и c – некоторые числа, причем а <> 0, а х – переменная, называется квадратным.

Примеры: 2х 2 +2х+1=0; -3х 2 +4х=0; 9х 2 -25=0. В каждом из уравнений назвать, чему равны коэффициенты.

Определение. Если в уравнении вида ax 2 +bx+c=0 хотя бы один из коэффициентов b или с равен 0, то уравнение называют неполным квадратным.

1. Если с=0, то уравнение имеет вид ax 2 +bx=0. Оно решается разложением на множители. Уравнение данного вида всегда имеет два корня, всегда один из них равен нулю.

Пример: 4х 2 +16х=0 Решить самостоятельно:

4х (х+4) = 0 3х 2 -6х=0

2. Если b=0, то уравнение имеет вид ax 2 +c=0. Оно решается только тогда, когда у коэффициентов а и с разные знаки. При решении уравнений применяет формулу разности квадратов.

Пример: 1) 1-4y 2 =0 2) 6х 2 +12=0

(1-2y) (1+2y) =0 Решений нет, так как это сумма квадратов, а не разность.

1-2y=0 или 1+2y=03) Решить самостоятельно -х 2 +3=0
2y=1 2y= -1(3-х)(3+х)=0
y=0,5 y= -0,53-х=0 или 3+х=0
Ответ: y=0,5; y= -0,5х= 3 х=-3

3. Если b=0 и с=0, то уравнение имеет вид ах 2 =0. Уравнение имеет единственный корень х=0.

Решение полных квадратных уравнений

Определение. Выражение вида D=b 2 -4ac называют дискриминантом квадратного уравнения.

Примеры. Вычислите дискриминант

2х 2 +3х+1=0, a=2, b=3, c=1 D=3 2 -4* 2* 4= -23

5х 2 -2х-1=0, a=5, b=-2, c=-1 D=(-2) 2 -4* 5* (-1)= 24

Самостоятельно: вычислите дискриминант -2х 2 -2х+5=0, 3х 2 +7х-3=0.

Для нахождения корней квадратного уравнения ax 2 +bx+c=0 пользуются формулами:

Если второй коэффициент является четным числом, формулу корней удобно записать в другом виде: ax 2 +2kx+c=0; D= k 2 -2ac,

1. Если D>0, то уравнение имеет два разных корня.

2. Если D=0, то уравнение имеет два равных корня.

3. Если D 2 +5х-8=0

Ответ:

a=1, b=5, c=10, D=5 2 -4E 1* 10= -15 2 -6х+9=0 a=1, b=-6, c=9

I способ (х-3) 2 =0II способ D=(-6) 2 -4* 1* 9= 0

Решение задач с помощью квадратных уравнений.

Задача1. Сумма двух чисел равна 13, их произведение равно 40. Найдите эти числа

Решение: I+II=13, I * II=40

Пусть х – первое число, тогда (13-х) – второе число. Зная, что их произведение равно 40, составляем уравнение:

D=(-13) 2 -4 * 1 * 40= 9

х1=8, х2=5.

Если первое число 8, тогда второе 5; если первое число 5, тогда второе 8.

Определение. Квадратное уравнение с первым коэффициентом, равным единице, называется приведенным x 2 +bx+c=0. Любое квадратное уравнение можно сделать приведенным.

5х 2 -2х+3=0. Разделим обе части уравнения на 5.

– приведенное квадратное уравнение.

Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Пример. Проверить теорему Виета для уравнения.

х1E х2=20 х2=5 , х1=4, х2=5

2) самостоятельно х 2 +16х+63=0

Обратная теорема. Если два числа в сумме равны b, а в произведении равны с, то эти числа являются корнями квадратного уравнения x 2 -bx+c=0.

Пример: 1) Составить квадратное уравнение, чтобы корни его были 2 и 3.

2) самостоятельно х1=4, х2=6. Составить квадратное уравнение.

Определение. Уравнение вида ax 4 +bx 2 +c=0, называется биквадратным.

Биквадратное уравнение решается с помощью замены вида x 2 =t

Пример 1) x 4 -15x 2 -96=0

Пусть x 2 =t, тогда t 2 -15t-96=0

х=G 4 корней нет

2) самостоятельно x 4 -11x 2 -12=0.

Домашнее задание. Выучить конспект, п 19-23, ответить на вопросы 1-5 после п. 23

Урок решения типовых задач.

Тема: Решение уравнений и задач с помощью составления уравнений.

Цели: Вырабатывать у учащихся умения и навыки по решению уравнения и задач, применяя теорему Виета и формулы корней квадратного уравнения.

Развивать логическое мышление и внимание учащихся.

Проверить усвоение теоретического материала по теме “Квадратные уравнения”.

Оборудование; таблицы, кодоскоп, листочки для математического диктанта.

  • оргмомент.
  • индивидуальная работа одного ученика у доски по карточке:

1. Запишите в общем виде квадратное уравнение.

2. Формула дискриминанта.

3. Формулы корней квадратного уравнения.

4. Теорема Виета.

В) Устно по кодоскопу со всем классом.

1. Назовите коэффициенты в уравнениях

3х 2 -5х=0 -5х 2 +3х+6=0 х 2 -2х-2=0 4х 2 +7=0 3х 2 =9

2. Найдите корни уравнения

х 2 -2х-35=0 b 2 -10b+24=0

Г) Математический диктант на листочках.

1. Запишите квадратное уравнение, у которого первый коэффициент 3 (-5), второй –5 (3), свободный член равен 0.

2. Запишите приведенное квадратное уравнение, у которого второй коэффициент и свободный член равны –2 (-3).

3. Запишите неполное квадратное уравнение, у которого первый коэффициент равен –5 (-3), свободный член равен 7 (5) и решите его.

4. Запишите неполное квадратное уравнение, у которого первый коэффициент равен 3 (5), второй коэффициент равен 5(7) и решите его.

Работа с классом.

1. 2х 2 +7х-9=02. 3х 2 =18х
Решение:Решение:
а=2, b=7, с=-93х 2 -18х=0
D=b 2 -4ac, D=49-4* 2* (-9), D=121, D>0 2 корня3x(x-6)=0
3x=0 или x-6=0
x=0 или х=6
Ответ: x1=1, x2=-4,5.Ответ: 0; 6.
3. 100х 2 -16=0,4. х 2 -2х-35=0
Решение:Решение:
(10x+4)(10x-4)=0х12=2 х1=7
10x+4=0 или10x-4=0 х1х2=-35 х2=-5
х=-0,4 х=0,4
Ответ: х 1=0,4 х 2=-0,4Ответ: х1=7; х2=-5

1. Периметр прямоугольника равен 20 см. Найдите его стороны, если известно, что площадь прямоугольника равна 24 см 2 .

Решение: Пусть х см длина прямоугольника, тогда y см – ширина. Зная, что Р=20 см и S=24 см 2 составляем систему уравнений:

Ответ: 6 см и 4 см.

2. В уравнении x 2 +px-18=0 один из корней равен –9. Найдите другой корень и коэффициент р.

“3”: Решите уравнения: 3х 2 +13х-10=0, 2х 2 -3х=0, 16х 2 =49, х 2 -16х+63=0.

“4” и “5”: Решите задачи: 1. Периметр прямоугольника равен 30 см, а площадь 56 см 2 . Найдите его стороны. 2. В уравнении x 2 +11x+q=0 х1=-7. Найдите другой корень и коэффициент q.

Урок-зачет по теме “Квадратные уравнения”.

Цели: Проверить знания учащихся, полученные на уроках по заданной теме.

Систематизировать знания, умения и навыки учащихся по решению квадратных уравнений.

Развивать логическое мышление учащихся.

Работать над четкостью и аккуратностью записей учащихся.

Оборудование: Зачетные карточки, рис.1, рис.2, кодоскоп.

  • Оргмомент.
  • Устно по кодоскопу:

1. Укажите в квадратном уравнении его коэффициенты:

х 2 +4х+5=0, 3х 2 -2х-11=0, 12х 2 -4х=0, х 2 -3=0.

2. Решите уравнение: 4х 2 -9=0, 1- 4y 2 =0, 5u 2 -u=0.

Работа учащихся у доски.

1. Решить уравнения 3х 2 -7х=0, х 2 -5=0.

2. Записать коэффициенты и вычислить D: -2х 2 +3х+7=0, 3х 2 -х+2=0.

3. Решить уравнение х 2 -х-12=0.

4. Составить уравнение по его корням:

5. Решить уравнения выделением квадрата: х 2 +8х-1=0, х 2 +10х+25=0.

6. Решить биквадратное уравнение: x 4 -13x 2 +36=0.

  • Вопросы:
    1. Какое уравнение называется квадратным?
    2. Какое уравнение называется неполным квадратным?
    3. Виды неполного квадратного уравнения и способы их решения.
    4. Какое уравнение называется приведенным квадратным?
    5. Способы решения приведенного квадратного уравнения.
    6. Какое выражение называется дискриминантом?
    7. Сколько корней может иметь квадратное уравнение?
    8. Формулы корней квадратного уравнения.
    9. Как читается теорема Виета?

    Дополнительно, на “4” и “5”:

    1. Вывести формулу корней квадратного уравнения.
    2. Доказать теорему Виета и ей обратную.
    3. Какое уравнение называется биквадратным? Как оно решается?

    Практическая часть зачета (в 4 вариантах, задания аналогичные).

    1) Решить уравнения: 16х 2 -625=0, 100х 2 -10х=0, 3х 2 -5х-2=0, х 2 -6х-7=0.

    2) Найдите два последовательных целых числа, сумма квадратов которых равна 221.

  • Составьте квадратное уравнение, чтобы оно имело корни: 0 и 7/3, 1 и 10.
  • Домашнее задание по [1] (на две недели):

    “3”: № 510 (а,д), 507 (б,г), 526 (а), 534 (а,б), 556.

    “4”: № 512 (а), 515, 526 (в), 536 (д,е), 551 (б), 559, 557.

    “5”: № 514 (б,д), 517, 525 (г), 540 (е,ж), 551 (а), 564, 567.

    Обобщающий урок “Оцени себя” по теме “Квадратные уравнения”.

    Обобщить, систематизировать и расширить знания учащихся по теме “Квадратные уравнения”.
    Развивать логическое мышление и элементы творческой деятельности учащихся.
    Воспитывать стремление к непрерывному совершенствованию своих знаний, формировать дружеские отношения и умение контролировать свои действия.

    Оборудование: телефоны (2 шт.), кодоскоп, табло “Секундная стрелка”, три подсказки (50х50, звонок другу, помощь зала), задания игрокам.

    Ведущая: учитель математики

    Помощники: два ученика из класса.

    Диктор: ученик класса.

    I отборочный тур (на ответ 10 секунд). Расположите в порядке изучения нами тем.

    1. Квадратные уравнения.

    2. Квадратные корни.

    3. Рациональные дроби.

    Победитель отборочного тура отвечает на 9 вопросов. Ответы: A, B, C, D. Оценка ставится в зависимости от числа правильных ответов: за три первых вопроса – оценка “3”, за три следующих вопроса – оценка “4”, за три последних – оценка “5”. В случаях, когда количество ответов находится в промежутке между 3 и 6 или 6 и 9, оценка ставится по нижней границе интервала ответов. Участник может воспользоваться тремя подсказками.

    1. Квадратным уравнением называется уравнение вида …

    a) ax 2 +bx+c=0; b) bx+c=0,; c) ax 2 +c=0,; d) ax 2 =0, где х- переменная и а<>0.

    2. В каком из квадратных уравнений правильно указаны его коэффициенты?

    a) 5х 2 -9х+4=0, a=5, b=9, c=4; b) х 2 +3х-10=0, a=1, b=3, c=-10;

    c) -х 2 -8х+1=0, a=1, b=-8, c=1; d) 6х 2 -30=0, a=3, b=-30, c=0.

    3. Решите уравнение 2х 2 =0. a) 2; b) -1; c) 1; d) 0 .

    4. Какое из выражений называют дискриминантом?

    a) d=b 2 -4ac; b) d=-(-b) 2 -4ac; c) d=b 2 +4ac; d) d=b-4ac.

    5. Чему равен дискриминант квадратного уравнения 2х 2 +3х+1=0?

    a) 0; b) 2; c) -1; d) 1.

    6. При каком условии дискриминанта уравнение не имеет корней?

    a) d>0; b) d>1; c) d 2 -7х+10=0. a) 5 и 2; b) –5 и 2; c) –5 и -2; d) 5 и -2 .

    Итог I тура. Рекламная пауза. Сообщение “Квадратные уравнения в Древнем Вавилоне”. [2]

    II отборочный тур. В какой последовательность был нами изучен материал по теме “Квадратные уравнения”:

    1. Решение задач с помощью квадратных уравнений.

    2. Определение квадратного уравнения.

    3. Решение квадратных уравнений по формуле.

    1. Как правильно пишется слово d?

    a) дискриминант; b) дескриминант; c) дискреминант; d) дискрименант .

    2. Сколько корней имеет квадратное уравнение, если d=25?

    a) нет корней; b) 1; c) 2; d) 5 .

    3. Какой формулой пользуемся при решении квадратного уравнения?

    a) b) c) d)

    4. Назовите, чему равна сумма и произведение корней квадратного уравнения х 2 -37х+27=0.

    a) 37, 27; b) –37, 27; c) –37, -27; d) 37, -27 .

    5. Найдите корни уравнения х 2 -6=0. a) 6; b) -6; c) +/- 6; d) 6.

    6. Найдите подбором корни уравнения х 2 -9х+20=0.

    a) –5 и -4; b) 9 и 11; c) 5 и 4; d) –5 и 4 .

    7. В уравнении х 2 +pх-35=0 один из корней равен 5. Найдите другой корень.

    a) -7; b) 7; c) 30; d) 35 .

    8. Если в уравнении левая и правая части являются рациональными выражениями, то такие уравнения называются…

    a) квадратными; b) неполными; c) целыми; d) рациональными.

    9.Вычислите 55 2 .

    a) 3025; b) 2525; c) 2025; d) 110.

    Итог II тура. Рекламная пауза. Сообщение “Как составлял и решал квадратные уравнения Диофант” [2].

    III отборочный тур. При решении дробных уравнений целесообразно поступать следующим образом…

    1. Исключить из его корней те, которые обращают в нуль общий знаменатель.

    2. Решить получившееся целое уравнение.

    3. Умножить обе части уравнения на общий знаменатель.

    4. Найти общий знаменатель дробей, входящих в уравнение.

    1. Выберите биквадратное уравнение

    a) k 4 -3k 2 +2=0; b) k 3 +3k 2 +k=0; c) k 2 +3=0; d) 4k 2 -k=0 .

    2. При каком условии d уравнение имеет один корень? a) d=0; b) d 0; d) d=1.

    3. Найди корни уравнения х 2 =-16. a) решений нет; b) 4, -4; c) 4; d) -4 .

    4. Реши уравнение х 2 -8х+7=0. a) –7 и -1; b) –7 и 1; c) 7 и -1; d) 7 и 1 .

    5. Автор учебника, где рассматривается тема “Квадратные уравнения”?

    a) Виленкин; b) Погорелов; c) Пифагор; d) Макарычев.

    6. Реши уравнение 2х 2 +3х=0. a) 0 и 1,5; b) 0 и –1,5; c) 0; d) 1,5 .

    7. При каких значениях х верно равенство (3х+1) 2 =3х+1?

    a) 0; b) -1; c) 1; d) нет таких значений .

    8. Как устроен данный числовой “угол”? Как будет выглядеть следующая строка?

    a) 4, 12, 36, 108; b) 4, 8, 16, 32; c) 4, 9, 13, 18; d) 4, 15, 26, 37 .

    9. Вычисли 196+ 7396. a) 10; b) 14; c) 86; d) 100 .

    Итог III тура. Рекламная пауза. Сценка на уроке алгебры в 8 классе – тема “Квадратный корень” (связь с биологией тема “Корень”).

    Итог урока. Выставление оценок учащимся.

    1. Алгебра. Учебник для 8 класса общеобразовательных учреждений. Под ред. С. А. Теляковского. – М.: Просвещение, 2000.
    2. Глейзер Г. И. История математики в школе. VII-VIII классы. – М.: Просвещение, 1982.

    Как решать квадратные уравнения

    О чем эта статья:

    Понятие квадратного уравнения

    Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

    Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

    Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

    Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

    А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

    Решить уравнение — значит найти все его корни или доказать, что их не существует.

    Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

    Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

    Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

    Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

    • если D 0, есть два различных корня.

    С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

    Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

    Приведенные и неприведенные квадратные уравнения

    Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

    Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

    Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

    Давайте-ка на примерах — вот у нас есть два уравнения:

    • x 2 — 2x + 6 = 0
    • x 2 — x — 1/4 = 0

    В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

    • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

    Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

    Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

    Для этого разделим обе части исходного уравнения на старший коэффициент 8:

    Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

    Полные и неполные квадратные уравнения

    В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

    Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

    Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

    Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

    Для самых любопытных объясняем откуда появились такие названия:
    • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
    • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
    • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

    Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

    Решение неполных квадратных уравнений

    Как мы уже знаем, есть три вида неполных квадратных уравнений:

    • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
    • ax 2 + c = 0, при b = 0;
    • ax 2 + bx = 0, при c = 0.

    Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

    Как решить уравнение ax 2 = 0

    Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

    Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

    Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

    Пример 1. Решить −6x 2 = 0.

    1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
    2. По шагам решение выглядит так:

    Как решить уравнение ax 2 + с = 0

    Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

    Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

    Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

    • перенесем c в правую часть: ax 2 = — c,
    • разделим обе части на a: x 2 = — c/а.

    Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

    Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

    Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

    • не имеет корней при — c/а 0.
    В двух словах

    Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

      Перенесем свободный член в правую часть:

    Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    УРОК. ТЕМА. РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ.

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    ТЕМА. РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ.

    ЦЕЛЬ. Закрепить изученные формулы, распространить знания введением дополнительных формул, развивать аналитическое мышление, воспитывать работоспособность.

    ТИП УРОКА. Урок формирования знаний.

    2. ПРОВЕРКА ДОМАШНЕГО ЗАДАНИЯ.

    Разобрать, как ученики выполнили задание № 420 (б). Один ученик у доски объясняет свой вариант решения. Класс проверяет свою работу, если возникнут вопросы, то спрашивают у ученика.

    Дано уравнение х 2 — 81х + q = 0. Пусть х – первый корень данного уравнения, тогда по условию второй корень будет 0,8 х. По теореме Виета имеем х + 0,8 х = 81.

    х = 45 – первый корень,

    тогда 45 • 0,8 = 36 – второй корень уравнения.

    Задача № 417 и №416 проверяем с места.

    Устно решаем уравнения, пользуясь теоремой Виета:

    1) х 2 + х -2 = 0 2) х 2 + 2х – 3 = 0 3) х 2 — 3х + 2 = 0

    4) х 2 — х – 2 = 0 5) х 2 — 2х – 3 = 0 6) х 2 — 3х – 4 = 0

    3. МОТИВАЦИЯ ОБУЧЕНИЯ.

    1)Если проанализировать корни уравнений, которые решали устно, то можно отметить, что в первом ряду один корень обязательно 1, а во второй строке – один из корней -1. Возникает проблема: когда сведено квадратное уравнение имеет корень 1 или -1? Когда полное квадратное уравнение ах 2 + вх + с = 0 имеет корень 1 или -1?

    2) Школьники без особых трудностей подбором находят целые корни сводных квадратных уравнений. А если уравнения имеют дробные корни, то не каждый ученик сразу может подобрать такие два числа, сумма которых равна , а произведение .Для преодоления этой проблемы можно использовать один известный прием.

    4. УСВОЕНИЕ ДОПОЛНИТЕЛЬНЫХ ЗНАНИЙ.

    1) Теорема. Если в уравнении ах 2 + вх + с = 0 сумма коэффициентов а + в + с = 0, то х = 1 и х = ; если а – в + с = 0, то х = -1 и х = — .

    Доказать сильным ученикам дома ( указание: выразить через другие коэффициенты)

    Пример: решить квадратное уравнение х 2 +17х – 18 = 0.

    а = 1, в = 17, с = -18 и а + в +с = 1 + 17 + (-18) = 0, тогда х = 1 и

    2) Пусть надо решить уравнение ах 2 + вх + с = 0, у которого х + х = , х • х = .

    Умножим обе части уравнения на а ( а ≠ 0 ), имеем

    ( ах) 2 + (ах) + ас = 0. Пусть ах = у, тогда у 2 + ву + ас = 0.

    Для этого уравнения у + у = ( х + х )а и в • в = (х •х)а 2 .

    Следовательно, для решения уравнения ах2 + вх + с = 0 достаточно решить вспомогательное уравнение у 2 + ву + са = 0 и его корни разделить на а.

    Пример: решить уравнение 6х 2 — 7х + 2 = 0.

    Д = 49 – 48 = 1. Д > 0, то уравнение имеет два корня.

    Умножим каждый член уравнения на 6: 36х 2 — 7•6х + 12 = 0 или вспомогательное уравнение

    у 2 — 7у + 12 = 0, где у = 6х. По теореме Виета у = 3 и у = 4,

    тогда х = 3 : 6 х = 4 : 6. то есть корни данного уравнения х = 1/2 и х = 2/3 .

    После того, как у учащихся сформируются практические навыки пользования приведенной схеме, им необязательно записывать вспомогательные уравнения и вычисления, а рассуждать можно устно.

    5. РЕШЕНИЮ УПРАЖНЕНИЙ.

    Задачи а) и б) выполняются на доске с помощью учителя, в) и г) – самостоятельно на оценку.

    1) Решить уравнения а) 3х 2 — 5х + 2 = 0 б) 8х 2 — 2х – 1 = 0

    в) 6х 2 + х – 15 = 0 г) 3х 2 — 11х + 6 = 0

    а) 1 способ: 3х 2 -5х + 2 = 0 заменим уравнением у 2 -5у +6 = 0, тогда

    у = 2 и у = 3. Следовательно, х = 2/3 и х = 1

    2 способ: а + в + с = 3 + (-5) + 2 = 0, тогда х = 1 и х = 2 : 3 = 2/3

    На одном примере мы показали два новых способа решения квадратных уравнений.

    б) 8х 2 — 2х – 1 = 0. Второй способ здесь не подходит, тогда введем вспомогательное уравнение

    у 2 — 2у – 8 = 0, где у = 4 и у = -2. Следовательно х = 4 : 8 = 1/2 и х = -2 : 8 = -1/4.

    в) 6х 2 + х – 15 = 0. Вспомогательное уравнение у 2 + у – 90 = 0, где у = -10 и

    у = 9. Тогда х = -10:6 = -5/3 и х = 9:6 = 3/2

    г) 3х 2 — 11х + 6 = 0. Вспомогательное уравнение у 2 — 11у + 18 = 0, где у = 9 и

    в = 2. Следовательно х = 9 : 3 = 3 и х = 2/3.

    2) Решите уравнение, пользуясь первой теоремой.

    а) 14х 2 — 17х + 3 = 0 б) 5х 2 + х – 6 = 0 в) 100х 2 — 83х – 183 = 0

    г) 17х 2 -1 5х – 2 = 0

    а) 14х 2 — 17х + 3 = 0 а + в + с = 14 + ( -17) + 3 = 0, тогда х = 1 и х = 3/14

    б) 5х 2 + х -6 = 0 а + в + с = 5 + 1 + (-6) = 0, тогда х = 1 и х = -6 : 5 = -1,2

    в) 100х 2 — 83х – 183 = 0

    а – в + с = 100 – (-83) + (-183) = 100 + 83 – 183 = 0, тогда х = — 1 и х = -1,8

    г) 17х 2 — 15х – 2 = 0 а + в + с = 17 – 15 – 2 = 0, тогда х = 1 и х = -2/17

    На уроке мы повторили все формулы, по которым можно найти корни квадратного уравнения, изучили новые формулы, которые не входят в программу, но можно их применять при решении уравнений. Если в задании не указано, каким способом решать, то ученик пользуется тем, который ему больше нравится, или который удобнее в данном случае.

    Записать в тетради уравнение: 1) 71х 2 + 75х + 4 = 0 2) 5х 2 — 8х + 3 = 0

    3) х 2 — 2х – 3 = 0 4) 1987х 2 + 2х – 1989 = 0 5) 5х 2 — 13х + 6 = 0

    6) 3х 2 — 10х + 8 = 0

    Выполнить все уравнения новыми способами. Повторить § 40 – 42.


    источники:

    http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya

    http://infourok.ru/urok-tema-reshenie-kvadratnih-uravneniy-1656309.html