Решение линейных уравнений с базисом

Решение систем линейных уравнений

Эта страничка поможет решить Системы Линейных Алгебраических Уравнений (СЛАУ) методом Гаусса, матричным методом или методом Крамера, исследовать их на совместность (теорема Кронекера-Капелли), определить количество решений, найти общее, частное и базисные решения.

Введите коэффициенты при неизвестных в поля. Если Ваше уравнение имеет меньшее количество неизвестных, то оставьте пустыми поля при переменных, не входящих в ваше уравнение. Можно использовать дроби ( 13/31 ).

Базисные (основные) и свободные (неосновные) переменные. Общее и базисное решения системы линейных алгебраических уравнений. Первая часть.

Что означает фраза «ранг матрицы равен $r$»? Она означает, что есть хотя бы один минор $r$-го порядка, который не равен нулю. Напомню, что такой минор называется базисным. Базисных миноров может быть несколько. При этом все миноры, порядок которых выше $r$, равны нулю или не существуют.

Выбрать $r$ базисных переменных в общем случае можно различными способами. В примерах я покажу наиболее часто используемый способ выбора.

Во всех изложенных ниже примерах матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы – буквой $\widetilde$.

Решить СЛАУ $ \left \ < \begin& 3x_1-6x_2+9x_3+13x_4=9\\ & -x_1+2x_2+x_3+x_4=-11;\\ & x_1-2x_2+2x_3+3x_4=5. \end \right.$. Если система является неопределённой, указать базисное решение.

Итак, мы имеем СЛАУ, у которой 3 уравнения и 4 переменных: $x_1$, $x_2$, $x_3$, $x_4$. Так как количество переменных больше количества уравнений, то такая система не может иметь единственное решение (чуть позже мы строго докажем это предложение на основе теоремы Кронекера-Капелли). Найдём решения СЛАУ, используя метод Гаусса:

$$ \left( \begin 3 & -6 & 9 & 13 & 9 \\ -1 & 2 & 1 & 1 & -11 \\ 1 & -2 & 2 & 3 & 5 \end \right) \rightarrow \left|\begin & \text<поменяем местами первую и третью>\\ & \text<строки, чтобы первым элементом>\\ & \text <первой строки стала единица.>\end\right| \rightarrow \\ \rightarrow\left( \begin 1 & -2 & 2 & 3 & 5\\ -1 & 2 & 1 & 1 & -11 \\ 3 & -6 & 9 & 13 & 9 \end \right) \begin \phantom <0>\\ II+I\\ III-3\cdot I\end \rightarrow \left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \\ 0 & 0 & 3 & 4 & -6 \end\right) \begin \phantom <0>\\ \phantom<0>\\ III-II\end \rightarrow \\ \rightarrow\left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end\right) $$

Мы завершили прямой ход метода Гаусса, приведя расширенную матрицу системы к ступенчатому виду. Слева от черты расположены элементы преобразованной матрицы системы, которую мы также привели к ступенчатому виду. Напомню, что если некая матрица приведена к ступенчатому виду, то её ранг равен количеству ненулевых строк.

И матрица системы, и расширенная матрица системы после эквивалентных преобразований приведены к ступенчатому виду; они содержат по две ненулевых строки. Вывод: $\rang A=\rang\widetilde = 2$.

Итак, заданная СЛАУ содержит 4 переменных (обозначим их количество как $n$, т.е. $n=4$). Кроме того, ранги матрицы системы и расширенной матрицы системы равны между собой и равны числу $r=2$. Так как $r < n$, то согласно следствию из теоремы Кронекера-Капелли СЛАУ является неопределённой (имеет бесконечное количество решений).

Найдём эти решения. Для начала выберем базисные переменные. Их количество должно равняться $r$, т.е. в нашем случае имеем две базисные переменные. Какие именно переменные (ведь у нас их 4 штуки) принять в качестве базисных? Обычно в качестве базисных переменных берут те переменные, которые расположены на первых местах в ненулевых строках преобразованной матрицы системы, т.е. на «ступеньках». Что это за «ступеньки» показано на рисунке:

На «ступеньках» стоят числа из столбцов №1 и №3. Первый столбец соответствует переменной $x_1$, а третий столбец соответствует переменной $x_3$. Именно переменные $x_1$ и $x_3$ примем в качестве базисных.

В принципе, если вас интересует именно методика решения таких систем, то можно пропускать нижеследующее примечание и читать далее. Если вы хотите выяснить, почему можно в качестве базисных взять именно эти переменные, и нельзя ли выбрать иные – прошу раскрыть примечание.

Почему можно принять переменные $x_1$ и $x_3$ в качестве базисных? Для ответа на этот вопрос давайте вспомним, что ранг матрицы системы равен числу $r=2$. Это говорит о том, что все миноры данной матрицы, порядок которых выше 2, либо равны нулю, либо не существуют. Ненулевые миноры есть только среди миноров второго порядка. Выберем какой-либо ненулевой минор второго порядка. Мы можем выбирать его как в исходной матрице системы $A$, т.е. в матрице $\left( \begin 3 & -6 & 9 & 13 \\ -1 & 2 & 1 & 1 \\ 1 & -2 & 2 & 3 \end \right)$, так и в преобразованной матрице системы, т.е. в $\left( \begin 1 & -2 & 2 & 3 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0 \end\right)$. Так как в преобразованной матрице системы побольше нулей, то будем работать именно с нею.

Итак, давайте выберем минор второго порядка, элементы которого находятся на пересечении строк №1 и №2, и столбцов №1 и №2:

$$ M_<2>^<(1)>=\left| \begin 1 & -2 \\ 0 & 0 \end\right|=1\cdot 0-(-2)\cdot 0=0. $$

Вывод: выбранный нами минор второго порядка не является базисным, ибо он равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №2 (он соответствует переменной $x_2$), то пара переменных $x_1$ и $x_2$ не могут быть базисными переменными.

Осуществим вторую попытку, взяв минор второго порядка, элементы которого лежат на пересечении строк №1, №2 и столбцов №3 и №4:

$$ M_<2>^<(2)>=\left| \begin 2 & 3\\ 3 & 4 \end\right|=2\cdot 4-3\cdot 3=-1. $$

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №3 (он соответствует переменной $x_3$) и столбца №4 (он соответствует переменной $x_4$), то пару переменных $x_3$ и $x_4$ можно принять в качестве базисных.

Сделаем и третью попытку, найдя значение минора, элементы которого расположены на пересечении строк №1, №2 и столбцов №1 и №3:

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №3 (он соответствует переменной $x_3$), то пару переменных $x_1$ и $x_3$ можно принять в качестве базисных.

Как видите, выбор базисных переменных не является однозначным. На самом деле количество вариантов выбора не превышает количество размещений из $n$ элементов по $r$, т.е. не больше чем $C_^$.

В рассматриваемом примере в качестве баисных были приняты переменные $x_1$ и $x_3$ – сугубо из соображений удобства дальнейшего решения. В чём это удобство состоит, будет видно чуток позже.

Базисные переменные выбраны: это $x_1$ и $x_3$. Остальные $n-r=2$ переменных (т.е. $x_2$ и $x_4$) являются свободными. Нам нужно выразить базисные переменные через свободные.

Я предпочитаю работать с системой в матричной форме записи. Для начала очистим полученную матрицу $\left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end\right)$ от нулевой строки:

$$ \left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \end\right) $$

Свободным переменным, т.е. $x_2$ и $x_4$, соответствуют столбцы №2 и №4. Перенесём эти столбцы за черту. Знак всех элементов переносимых столбцов изменится на противоположный:

Почему меняются знаки? Что вообще значит это перенесение столбцов? показать\скрыть

Давайте обратимся к расширенной матрице системы, которая после преобразований имеет вид $\left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \end\right)$. Перейдём от матрицы к уравнениям. Первая строка соответствует уравнению $x_1-2x_2+2x_3+3x_4=5$, а вторая строка соответствует уравнению $3x_3+4x_4=-6$. Теперь перенесём свободные переменные $x_2$ и $x_4$ в правые части уравнений. Естественно, что когда мы переносим выражение $4x_4$ в правую часть уравнения, то знак его изменится на противоположный, и в правой части появится $-4x_4$.

Если опять записать полученную систему в виде матрицы, то мы и получим матрицу с перенесёнными за черту столбцами.

А теперь продолжим решение обычным методом Гаусса. Наша цель: сделать матрицу до черты единичной. Для начала разделим вторую строку на 3, а потом продолжим преобразования обратного хода метода Гаусса:

$$ \left( \begin 1 & 2 & 5 & 2 & -3\\ 0 & 3 & -6 & 0 & -4 \end\right) \begin \phantom <0>\\ II:3 \end \rightarrow \left( \begin 1 & 2 & 5 & 2 & -3\\ 0 & 1 & -2 & 0 & -4/3 \end\right) \begin I-2\cdot II \\ \phantom <0>\end \rightarrow \\ \rightarrow \left(\begin 1 & 0 & 9 & 2 & -1/3\\ 0 & 1 & -2 & 0 & -4/3 \end\right). $$

Матрица до черты стала единичной, метод Гаусса завершён. Общее решение найдено, осталось лишь записать его. Если вспомнить, что четвёртый столбец соответствует переменной $x_2$, а пятый столбец – переменной $x_4$, то получим:

Нами получено общее решение заданной СЛАУ. Чтобы найти базисное решение, нужно все свободные переменные приравнять к нулю. Т.е. полагая $x_2=0$ и $x_4=0$, будем иметь:

Решение $x_1=9$, $x_2=0$, $x_3=-2$, $x_4=0$ и является базисным решением данной СЛАУ. В принципе, задавая свободным переменным иные значения, можно получить иные частные решения данной системы. Таких частных решений бесконечное количество. Например, принимая $x_2=-4$ и $x_4=1$, получим такое частное решение: $\left\ <\begin& x_1=\frac<2><3>;\\ & x_2=-4;\\ & x_3=-\frac<10><3>;\\ & x_4=1. \end\right.$. Базисное решение, которые мы нашли ранее – лишь одно из бесконечного множества частных решений заданной СЛАУ.

Если есть желание, то полученное решение можно проверить. Например, подставляя $x_1=9+2x_2-\frac<1><3>x_4$ и $x_3=-2-\frac<4><3>x_4$ в левую часть первого уравнения, получим:

$$ 3x_1-6x_2+9x_3+13x_4=3\cdot \left(9+2x_2-\frac<1><3>x_4\right)-6x_2+9\cdot \left(-2-\frac<4><3>x_4\right)+13x_4=9. $$

Проверка первого уравнения увенчалась успехом; точно так же можно проверить второе и третье уравнения.

Если система является неопределённой, указать базисное решение.

Похожий пример уже был решен в теме «метод Крамера» (пример №4). Переменные $x_4$ и $x_5$ были перенесены в правые части, а дальше применялись стандартные операции метода Крамера. Однако такой метод решения не гарантирует достижения результата. Например, мы переносим некие переменные в правую часть, а оставшийся определитель оказывается равным нулю, – что тогда? Решать перебором? 🙂 Поэтому гораздо удобнее применять преобразования метода Гаусса, как и в предыдущем примере.

$$ \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 4 & -11 & 21 & -2 & 3 & -1\\ -3 & 5 & -13 & -4 & 1 & -2 \end \right) \begin \phantom <0>\\ II-4\cdot I\\ III+3\cdot I\end \rightarrow \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 0 & -3 & 5 & -2 & -5 & -1\\ 0 & -1 & -1 & -4 & 7 & -2 \end \right) \rightarrow \\ \rightarrow \left|\begin & \text<поменяем местами вторую и третью>\\ & \text<строки, чтобы диагональным элементом>\\ & \text <второй строки стало число (-1).>\end\right|\rightarrow \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 0 & -1 & -1 & -4 & 7 & -2\\ 0 & -3 & 5 & -2 & -5 & -1 \end \right) \begin \phantom <0>\\ \phantom<0>\\ III-3\cdot I\end \rightarrow \\ \rightarrow \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 0 & -1 & -1 & -4 & 7 & -2\\ 0 & 0 & 8 & 10 & -26 & 5 \end \right). $$

Матрица системы и расширенная матрица системы приведены к трапециевидной форме. Ранги этих матриц равны между собой и равны числу 3, т.е. $\rang A=\rang\widetilde = 3$. Так как ранги равны между собой и меньше, чем количество переменных, то согласно следствию из теоремы Кронекера-Капелли данная система имеет бесконечное количество решений.

Количество неизвестных $n=5$, ранги обеих матриц $r=3$, поэтому нужно выбрать три базисных переменных и $n-r=2$ свободных переменных. Применяя тот же метод «ступенек», что и в предыдущем примере, выберем в качестве базисных переменных $x_1$, $x_2$, $x_3$, а в качестве свободных переменных – $x_4$ и $x_5$.

Столбцы №4 и №5, которые соответствуют свободным переменным, перенесём за черту. После этого разделим третью строку на 8 и продолжим решение методом Гаусса:

$$ \left( \begin 1 & -2 & 4 & 0 & 0 & -2\\ 0 & -1 & -1 & -2 & 4 & -7\\ 0 & 0 & 8 & 5 & -10 & 26 \end \right) \begin \phantom <0>\\ \phantom<0>\\ III:8\end \rightarrow \left( \begin 1 & -2 & 4 & 0 & 0 & -2\\ 0 & -1 & -1 & -2 & 4 & -7\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) \begin I-4\cdot III \\ II+III\\ \phantom<0>\end \rightarrow \\ \left( \begin 1 & -2 & 0 & -5/2 & 5 & -15\\ 0 & -1 & 0 & -11/8 & 11/4 & -15/4\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) \begin \phantom <0>\\ II\cdot (-1)\\ \phantom<0>\end \rightarrow \left( \begin 1 & -2 & 0 & -5/2 & 5 & -15\\ 0 & 1 & 0 & 11/8 & -11/4 & 15/4\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) \begin I+2\cdot II \\ \phantom<0>\\ \phantom<0>\end \rightarrow\\ \rightarrow\left( \begin 1 & 0 & 0 & 1/4 & -1/2 & -15/2\\ 0 & 1 & 0 & 11/8 & -11/4 & 15/4\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) $$

Продолжение этой темы рассмотрим во второй части, где разберём ещё два примера с нахождением общего решения.

Решение задач методом Гаусса

Содержание:

Решение задач методом Гаусса. Применение метода Гаусса к задачам линейной зависимости систем векторов

Мы уже говорили о том, что одной из важных задач линейной алгебры является выяснение факта — линейно зависима или независима в пространстве система векторов . Метод Гаусса играет здесь решающую роль.

Определение 1. Линейное уравнение называется однородным, если свободный член уравнения равен нулю. Система, состоящая из однородных уравнений, сама называется однородной.

Однородная система линейных уравнений с неизвестными имеет вид:

(1)

Однородная система всегда совместна, т.к. одним из ее решений является .

Это решение называют нулевым. Важно знать имеет ли конкретная однородная система ненулевые решения.

Теорема 1. Однородная линейная система, в которой число уравнений меньше числа неизвестных, всегда имеет ненулевое решение.

Заметим, что система (1) может быть записана в векторном виде

. (2)

В этой записи участвуют векторов:

Т.о., неизвестные являются коэффициентами линейной комбинации векторов . Поэтому, решая методом Гаусса систему (1.3), мы ищем коэффициенты .. Если окажется, что решение единственное (т.е. нулевое), то система векторов линейно независима. В противном случае она линейно зависима.

Пример №19

Дана система из четырех векторов, принадлежащих :

(3)

Является ли эта система линейно зависимой в ?

Решение:

Запишем уравнение , которое в координатной записи представляет собой однородную линейную систему

Если система уравнений (4) имеет только нулевое решение, то система векторов (3) линейно независима в . Если же имеются и ненулевые решения, то система векторов (3) линейно зависима.

Применим к системе уравнений (4) метод Гаусса:

Получилась система уравнений с базисными неизвестными и свободным неизвестным . Наличие свободного неизвестного означает, что решений бесконечное множество. Следовательно, система векторов (3) линейно зависима в .

Индекс цен и индекс инфляции. Ортогональные векторы

Одним из способов определения индекса цен и уровня инфляции является расчет стоимости «потребительской корзины», состоящей из основных видов товаров и услуг, получаемых потребителями. Обычно это 300 необходимых видов товаров и услуг. В табл. 1 приведен условный пример, отражающий изменение стоимости потребительской корзины по трем товарам.

Табл. 1. Изменение стоимости товаров, входящих в потребительскую корзину

Индекс цен р и индекс инфляции i рассчитываются следующим образом:

р = • 100% = 106,3%, i= р -100 = 6,3%.

Т.к. i > 0, то это инфляция — повышение общего (среднего) уровня цен в экономике страны. Заметим, что при i

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

http://math1.ru/education/sys_lin_eq/basis1.html

http://natalibrilenova.ru/reshenie-zadach-metodom-gaussa/