Решение линейных уравнений с переменными 7 класс

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Системы линейных уравнений (7 класс)

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений \(x=3\);\(y=-1\) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо \(x\) и \(y\), оба уравнения превратятся в верные равенства \(\begin3-2\cdot (-1)=5 \\3 \cdot 3+2 \cdot (-1)=7 \end\)

А вот \(x=1\); \(y=-2\) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» \(\begin1-2\cdot(-2)=5 \\3\cdot1+2\cdot(-2)≠7 \end\)

Отметим, что такие пары часто записывают короче: вместо «\(x=3\); \(y=-1\)» пишут так: \((3;-1)\).

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел \((x_0;y_0)\)

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Способ алгебраического сложения.

    Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:\(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\).

    Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, (\(3\) и \(3\)) или противоположны по значению (например, \(5\) и \(-5\)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на \(2\), а второе — на \(3\).

    \(\begin2x+3y=13 |\cdot 2\\ 5x+2y=5 |\cdot 3\end\)\(\Leftrightarrow\)\(\begin4x+6y=26\\15x+6y=15\end\)\(\Leftrightarrow\)

    Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

    Найдите неизвестное из полученного уравнения.

    Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

    Ответ запишите парой чисел \((x_0;y_0)\).

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: \(\begin12x-7y=2\\5y=4x-6\end\)

    Приводим систему к виду \(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\) преобразовывая второе уравнение.

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на \(3\).

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    Делим уравнение на \(8\), чтобы найти \(y\).

    Игрек нашли. Теперь найдем \(x\), подставив вместо игрека \(-2\) в любое из уравнений системы.

    Икс тоже найден. Пишем ответ.

    Приведите каждое уравнение к виду линейной функции \(y=kx+b\).

    Постройте графики этих функций. Как? Можете прочитать здесь .

  1. Найдите координаты \((x;y)\) точки пересечения графиков и запишите их в ответ в виде \((x_0;y_0 )\).
    Ответ: \((4;2)\)
  2. Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений \(x_0\) и \(y_0\) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему \(\begin3x-8=2y\\x+y=6\end\), мы получили ответ \((4;2)\). Проверим его, подставив вместо икса \(4\), а вместо игрека \(2\).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: \(\begin3(5x+3y)-6=2x+11\\4x-15=11-2(4x-y)\end\)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на \(2\).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим \(6x-13\) вместо \(y\) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем \(117\) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на \(67\).

    Ура, мы нашли \(x\)! Подставим его значение во второе уравнение и найдем \(y\).

    Линейное уравнение с одной переменной

    Содержание

    Что такое уравнение

    Для изучения темы линейного уравнения вспомним, что уравнением называют равенство, в составе которого есть неизвестное число. Это неизвестное число-переменную нам и нужно найти.

    К примеру, не будут уравнениями выражения $3n-4$ или $d + 8$. Ведь в них не требуется найти значение переменной и отсутствует знак равенства. Это просто буквенные выражения. А вот записи: $4y-7 = 13$ или $-5x = 6x-2$ являются уравнениями.

    Чаще всего уравнения используют, чтобы решить задачу.

    Приведем пример

    Папе и сыну вместе $45$ лет, при этом известно, что отец старше на $19$ лет. Найдем, сколько лет каждому из них?

    Обозначим возраст сына за $x$, тогда папе будет $x+19$ лет. Получим уравнение: $x + (x + 19) = 45$, так как по условию вместе им $45$ лет. Решим:

    после раскрытия скобок: $2x + 19 = 45$,

    То есть с помощью составления уравнения мы выяснили, что сыну $13$ лет. Отцу тогда $32$ года $(13 + 19)$. И вместе им действительно $45$ лет: $$13 + 32 = 45$$

    Таким образом, записав по условию задачи уравнение, мы смоделировали алгебраическую модель ситуации.

    Неизвестная переменная может обозначаться в уравнении не только буквами $x$ или $y$, но и любыми другими латинскими буквами.

    Когда от нас требуется решить уравнение, мы должны найти все его корни либо показать, что их нет.

    Корень уравнения – это значение неизвестной переменной, превращающее уравнение в верное равенство.

    Рассмотрим пример

    Выясним, является ли корнем этого уравнения $x = 4$. Подставим $4$ вместо $x$ и получим: $$<3\times 4>-1 = 5$$$$12-1 = 5$$$$11 = 5$$

    При решении мы поняли, что $x ≠ 4$, так как $11 ≠ 5$. То есть число $4$ не может быть корнем данного в задании уравнения. Посчитайте самостоятельно, какой корень у этого уравнения?

    Корней может быть несколько, один или не быть совсем. В последнем случае говорят обычно, что уравнение не имеет решения или не имеет корней.

    В примере с папой и сыном корень уравнения единственный: $x = 13$. Ведь нет других вариантов решения, при которых будут выполнены все условия и получится верное равенство. Проверьте сами?

    Что такое линейное уравнение

    Если числа в конечном уравнении $2x = 26$ к нашему первому примеру заменить на буквы $a$ и $b$, мы получим уравнение вида $ax = b$.

    Подобные уравнения и называются линейными.

    Уравнения вида $ax = b$, где $x$ — переменная, $a$ и $b$ — некоторые числа, называются линейными уравнениями с одной переменной

    Когда уравнения содержат, к примеру, степень: $$x^2 + 3 = 7$$ или неизвестная переменная находится в знаменателе дроби: $$\frac <8> — 3 = 0$$ они не будут называться линейными.

    Иногда в составе уравнения есть несколько переменных, это тоже не наш случай: такие уравнения будут изучаться позже.

    Коэффициенты и решение линейных уравнений

    Числа $a$ и $b$ в линейном уравнении называют коэффициентами. Они могут быть выражены любыми числами, в том числе отрицательными или дробными. При этом $a$ называют коэффициентом при неизвестной переменной, а коэффициент $b$ свободным.

    В наших примерах у уравнений был единственный корень. Наверное, вы заметили, что в них коэффициенты $a$ и $b$ были равны числам, отличным от нуля. Подобные уравнения решаются по простому алгоритму: $$x = \frac $$

    Посмотрим, когда линейное уравнение никак не может иметь корней (или верного решения).

    Попробуем взять коэффициент $a$, равный $0$, а коэффициент $b$ — любое число, не равное $0$. Тогда получим уравнение: $$0\times x = b$$ При умножении $x$ на ноль всегда будет ноль, но у нас $b ≠ 0$. Следовательно, правая и левая части такого уравнения между собой не равны, и при $a = 0$, а $b ≠ 0$ линейное уравнение не имеет верного решения.

    Но линейное уравнение может иметь и множество решений. Рассмотрим такой случай. Например, что будет, если оба коэффициента равны нулю: $a = 0$ и $b = 0$? $$0\times x + 0 = 0$$ Ясно, что любое подобное уравнение с обоими коэффициентами, равными нулю, имеет бесконечно много корней. Почему? Потому что любое число при умножении на 0 дает ноль. Какое бы число вместо $x$ мы не подставили, равенство будет верным.

    Таким образом, при решении линейных уравнений мы пришли к трем общим ситуациям:

    Величины $a$ и $b$$a ≠ 0$, $b$ — любое$a = b = 0$$a = 0$, $b ≠ 0$
    Корни уравнения $ax = b$$x = \frac $$x$ — любоекорней нет

    Свойства линейных уравнений

    Цель любого линейного уравнения – выразить $x$ и понять, чему он будет равен.

    До того, как начать решать уравнение, над ним необходимо произвести все доступные арифметические действия, например, сложение/вычитание, раскрытие скобок, умножение/деление отдельно для свободных коэффициентов и отдельно для членов уравнения с неизвестной переменной.

    Для упрощения дальнейшего решения с уравнениями можно произвести те же действия, что применяются к другим математическим выражениям.

    Свойства линейных уравнений:

    1. Любой член можно перенести из одной части линейного уравнения в другую, но при этом нужно не забыть заменить знак на противоположный.

    В процессе решения надо так преобразовать уравнение, чтобы все известные члены оказались с одной стороны равенства, а неизвестные — с другой.

    Например: $5x = 30-3x$. Для решения перенесем $-3x$ в левую часть с противоположным знаком и получим $5x + 3x = 30$.

    1. В ходе решения обе части уравнения можно одновременно делить или умножать на какое-то одно и то же число, отличающееся от $0$. При этом равенство будет оставаться верным.

    Часто второе свойство применяется в уравнениях с дробями. Например, нужно решить уравнение: $$\frac <5><2>\times x = 8$$ Чтобы избавиться от дроби, попробуем и правую и левую части уравнения умножить на $2$. Тогда мы получим: $$2\times \frac <5><2>\times x = 2\times 8$$ После умножения уравнение примет следующий вид: $$5x = 16$$

    Согласитесь, такое уравнение решить намного легче. При этом после подобных преобразований равенство не нарушается, и мы получаем равносильные уравнения.


    источники:

    http://cos-cos.ru/math/123/

    http://obrazavr.ru/algebra/7-klass-algebra/vyrazheniya-tozhdestva-uravneniya/uravneniya-s-odnoj-peremennoj/linejnoe-uravnenie-s-odnoj-peremennoj/