Решение логарифмических уравнений методом потенцирования и логарифмирования

Решение логарифмических уравнений — примеры с решениями

Решение простейших логарифмических уравнений

Как известно, решение простейшего логарифмического уравнения logax=b — это x=a b . Другими словами, простейшее логарифмическое уравнение logax=b имеет единственный корень, которым является степень a b .

Первый пример. Проще некуда.

Решите уравнение log5x=2

Все понятно без слов:
log5x=2
x=5 2
x=25

При решении простейших логарифмических уравнений переход от logax=b к x=a b , обычно, не представляет сложности. Часто, куда сложнее вычислить значение степени a b или упростить ее вид. Следующие примеры иллюстрируют сказанное.

Второй пример. А вычислить значение?

Решите логарифмическое уравнение

Это простейшее логарифмическое уравнение. Оно имеет единственный корень . Очевидно, полученная степень нуждается в доработке.

Сначала заменим квадратный корень из семи степенью: .

Остается вспомнить, как определяется степень с отрицательным показателем, и закончить вычисления:

На этом решение простейшего логарифмического уравнения завершено.

Третий пример. Извольте упростить.

Начинаем со стандартного при решении простейших логарифмических уравнений перехода:

Надо бы упростить полученную степень.

Возвести дробь в минус первую степень – это кувыркнуть ее вверх ногами:

Теперь глаза мозолит иррациональность в знаменателе, исправим эту ситуацию:

Таким образом, — искомое решение простейшего логарифмического уравнения.

Решение логарифмических уравнений разными методами

Сейчас пройдемся по всем основным методам решения логарифмических уравнений, и рассмотрим решения наиболее характерных и интересных, по нашему мнению, логарифмических уравнений.

по определению логарифма

По определению логарифма в первую очередь проводится решение логарифмических уравнений logaf(x)=b , где a и b — числа, причем a>0 , a≠1 , а f(x) – выражение с переменной x , таких как log2(x 2 +4·x+3)=3 , и др. Решение состоит в переходе от уравнения logaf(x)=b к уравнению f(x)=a b . Например, решение логарифмического уравнения log2(x 2 +4·x+3)=3 с опорой на определение логарифма заменяется решением уравнения x 2 +4·x+3=2 3 .

На определение логарифма можно опираться и при решении логарифмических уравнений logh(x)f(x)=g(x) , таких как logx(x 2 −3·x+6)=2 , log2(9−2 x )=3−x , logx(3·x lgx +4)=2·lgx и др. Решение уравнения logh(x)f(x)=g(x) заключается в решении уравнения f(x)=(h(x)) g(x) на области допустимых значений (ОДЗ) для исходного уравнения. Например, чтобы решать логарифмическое уравнение logx(x 2 −3·x+6)=2 по определению логарифма, надо решить уравнение x 2 −3·x+6=x 2 , и взять все корни, принадлежащие ОДЗ для исходного уравнения.

  • Чтобы решить логарифмическое уравнение logaf(x)=b по определению логарифма, надо перейти к уравнению f(x)=a b и найти его решение.
  • А чтобы решить по определению логарифма уравнение logh(x)f(x)=g(x) , надо перейти к уравнению f(x)=(h(x)) g(x) , решить его, и взять корни, принадлежащие ОДЗ для исходного логарифмического уравнения.

Рассмотрим примеры решения логарифмических уравнений.

Обычно решение оформляется кратко:

А теперь поясним, какие рассуждения за всем этим скрываются.

Заданное логарифмическое уравнение имеет вид logaf(x)=b , где f(x)=2·x−4 , a=1/2 , b=−2 . Такое логарифмическое уравнение можно решать по определению логарифма, то есть, заменять решение уравнения logaf(x)=b решением уравнения f(x)=a b .

Итак, переходим от исходного уравнения к уравнению . Это рациональное уравнение, решаем его:

Так получено решение исходного логарифмического уравнения.

Пример. Не забыть про проверку.

Решите логарифмическое уравнение logx(−x 2 +5·x+3)=2

Заданное уравнение можно рассматривать как уравнение logh(x)f(x)=g(x) , где f(x)=−x 2 +5·x+3 , h(x)=x , g(x)=2 , и мы знаем, что такие уравнения можно решать по определению логарифма. Решение этим методом на первом этапе предполагает переход от уравнения logh(x)f(x)=g(x) к уравнению f(x)=(h(x)) g(x) . Имеем −x 2 +5·x+3=x 2 .

Теперь нам надо решить полученное уравнение −x 2 +5·x+3=x 2 . Оно сводится к квадратному уравнению 2·x 2 −5·x−3=0 . Решаем его:

Остается пройти последний шаг решения логарифмического уравнения по определению логарифма – выяснить, какие из корней принадлежат ОДЗ для исходного уравнения. ОДЗ для исходного логарифмического уравнения logx(−x 2 +5·x+3)=2 определяется системой .

Очевидно, не удовлетворяет второму условию, значит, это посторонний корень для исходного уравнения. А корень x2=3 удовлетворяет всем условиям: . Значит, x2=3 – это корень уравнения logx(−x 2 +5·x+3)=2 .

На этом решение завершено. Уравнение имеет единственный корень 3 .

Естественно, так подробно решение не описывают. Обычно его оформляют кратко, но без ущерба для логики действий, например, так:

методом потенцирования

Метод потенцирования применяется для решения логарифмических уравнений, части которых являются логарифмами с одинаковыми основаниями, например, log5(x−1)=log57 , и др. Решение логарифмических уравнений методом потенцирования состоит в переходе от уравнения logh(x)f(x)=logh(x)g(x) к уравнению f(x)=g(x) на ОДЗ для исходного уравнения. Так решение уравнения можно заменить решением уравнения x+1=x 2 −1 на ОДЗ для исходного уравнения.

Название метода становится понятным, если вспомнить, что потенцирование – это восстановление выражения по его логарифму.

Обосновать метод можно, сославшись на свойства логарифмов. Из них мы знаем, что логарифмы двух положительных чисел с одинаковыми положительными и отличными от единицы основаниями равны тогда и только тогда, когда равны сами числа, то есть, , a>0 , a≠1 , b1>0 , b2>0 . Так вот переход от логарифмического уравнения logh(x)f(x)=logh(x)g(x) к уравнению f(x)=g(x) — это аналог замены logab1=logab2 на b1=b2 , а нахождение в рамках ОДЗ для исходного уравнения – это аналог выполнения условий a>0 , a≠1 , b1>0 , b2>0 .

Итак, чтобы решить логарифмическое уравнение logh(x)f(x)=logh(x)g(x) методом потенцирования, надо

  • Перейти к уравнению f(x)=g(x) .
  • Решить полученное уравнение.
  • И взять корни, принадлежащие ОДЗ для исходного уравнения, остальные отбросить как посторонние. Другими словами, провести отсеивание посторонних корней.

Остается рассмотреть пример с решением.

Мы видим, что части уравнения являются логарифмами с одинаковыми основаниями. Подобные логарифмические уравнения удобно решать методом потенцирования.

Согласно выбранному методу, переходим от исходного уравнения к уравнению x+1=x 2 −1 .

Теперь нам надо решить полученное уравнение x+1=x 2 −1 . Перенос слагаемых из одной части уравнения в другую с противоположным знаком и приведение подобных слагаемых дает квадратное уравнение x 2 −x−2=0 , которое можно решить, например, через дискриминант:

Остается проверить принадлежность найденных корней области допустимых значений переменной x для исходного уравнения. Для нашего логарифмического уравнения ОДЗ определяют два условия x+1>0 и x 2 −1>0 . Очевидно, x1=−1 не удовлетворяет первому условию ( −1+1>0 — неверное), значит, это посторонний корень для решаемого уравнения. А корень x2=2 удовлетворяет обоим условиям ( 2+1>0 – верное, 2 2 −1>0 — верное). Значит, он является корнем уравнения .

На этом решение логарифмического уравнения методом потенцирования завершено. Уравнение имеет единственный корень, им является число 2 .

методом разложения на множители

Пример. Все как всегда.

Решение логарифмического уравнения можно провести методом разложения на множители, так как в левой части уравнения находится произведение двух выражений с переменной, а в правой – нуль.

Первый шаг – переход к совокупности уравнений:

Второй шаг – решение полученных логарифмических уравнений.

Первое уравнение можно решить по определению логарифма, а второе — методом потенцирования, после предварительного переноса второго логарифма в правую часть со знаком «плюс»:

На последнем шаге остается выяснить, принадлежат ли найденные корни 2 и 5 ОДЗ для решаемого логарифмического уравнения :

На этом решение логарифмического уравнения методом разложения на множители завершено.

путем введения новой переменной (замены переменной)

Решение логарифмических уравнений методом введения новой переменной, как правило, проводится в следующих типичных ситуациях:

  • Когда переменная находится в составе некоторой сложной функции, как, например, в уравнении
  • Когда переменная фигурирует в нескольких одинаковых выражениях и нигде более. Вот примеры логарифмических уравнений, соответствующие сказанному:

(часто, одинаковые выражение с переменной прячут за свойствами степеней, и приведенное выше в пример логарифмическое уравнение, скорее, будет выглядеть так или так )

  • Когда в логарифмическом уравнении переменная находится только под знаками логарифмов, которые получаются один из другого перестановкой местами выражения под его знаком и в основании. Вот такое логарифмическое уравнение
  • Пример №1. Вводить или не вводить?

    Решите логарифмическое уравнение

    Введение новой переменной 2−log2x=t позволяет перейти от логарифмического уравнения к сравнительно простому уравнению t 4 =16 с понятной структурой и очевидным решением:

    Возврат к старой переменной дает два логарифмических уравнения 2−log2x=2 и 2−log2x=−2 , решив которые находим интересующее нас решение исходного уравнения:

    Итак, логарифмическое уравнение имеет два корня 1 и 16 .

    В заключение заметим: введение новой переменной в подобных и, прямо скажем, простых ситуациях настолько прозрачно, что его проводят «в уме», и не отражают в решении:

    Пример №2. Оказывается, оно квадратное.

    Выражения 2 2·(log5x) 2 и 2 (log5x) 2 , в которых содержится переменная в заданном логарифмическом уравнении, почти одинаковые. Различие вносит лишь число 2 в показателе первой степени. Здесь несложно догадаться, что по свойству степени в степени, выражение 2 2·(log5x) 2 можно переписать как (2 (log5x) 2 ) 2 , что открывает дорогу к замене переменной 2 (log5x) 2 =t и переходу к квадратному уравнению t 2 −15·t−16=0 с новой переменной t .

    Итак, проведем решение логарифмического уравнения через замену переменной:

    Пример. Взаимно обратные логарифмы.

    Решите логарифмическое уравнение

    Здесь полезно вспомнить следствие из формулы перехода к новому основанию логарифма, которому отвечает формула logab=1/logba , a>0 , a≠1 , b>0 , b≠1 . Так возникает идея обозначить один из логарифмов в заданном логарифмическом уравнении за t , тогда другой логарифм будет выражаться через новую переменную t как 1/t .

    Остается вернуться к старой переменной x , и закончить решение. Мы принимали logx+3(3·x+13)=t и нашли t=2 , поэтому

    Итак, логарифмическое уравнение имеет единственное решение 1 .

    дробь равна нулю

    Решите логарифмическое уравнение

    Решение логарифмических уравнений, в левых частях которых находится дроби, а в правых – нули, проводится в соответствии с методом решения уравнений «дробь равна нулю». При этом надо приравнять числитель дроби к нулю, и решить это уравнение на ОДЗ для исходного уравнения.

    Итак, решение начинаем с приравнивания к нулю числителя дроби из левой части заданного уравнения. Это дает уравнение log3(x−3) 2 −4=0 , которое равносильно уравнению log3(x−3) 2 =4 . Решение полученного логарифмического уравнения можно провести по определению логарифма:

    Остается проверить, принадлежат ли найденные корни области допустимых значений переменной x для исходного логарифмического уравнения. В нашем случае условий, которые определяют ОДЗ, довольно много, поэтому, кажется, рациональнее действовать через непосредственную подстановку. Подставим найденные корни в исходное уравнение и посмотрим, что при этом получается.

    Подстановка x1=12 дает верное числовое равенство

    Поэтому, 12 является корнем.

    При подстановке x2=−6 получается не имеющее смысла выражение , так как под знаками логарифмов в знаменателе – отрицательные числа. Значит, −6 – посторонний корень.

    методом логарифмирования

    Решение логарифмических уравнений в определенных случаях приходится проводить через логарифмирование обеих частей уравнения. Обычно, к логарифмированию прибегают тогда, когда в одной части уравнения находится показательно степенное выражение, а в другой – положительное число, как в следующих уравнениях , и т.п.

    Давайте решим одно из них, чтобы стало понятно, что дает логарифмирование уравнения.

    Пример. Дожили, лог уравнения логарифмируем

    Данное уравнение – это типичный представитель уравнений, для решения которых используется метод логарифмирования. В левой части уравнения – степень, на ОДЗ для уравнения эта степень принимает только положительные значения. Это открывает возможность прологарифмировать обе части заданного уравнения. В нашем случае логарифмирование целесообразно проводить по основанию 2 , так как в исходном уравнении присутствует логарифм с таким основанием. Так и поступим:

    Для нашего уравнения ОДЗ определяется условием x>0 . Поэтому, мы спокойно можем вынести степень из-под знака логарифма, оперевшись на соответствующее свойство логарифмов (подробнее про решение логарифмических уравнений через преобразования поговорим в одном из следующих пунктов):

    И это, собственно, то, ради чего логарифмирование затевалось – привести логарифмическое уравнение к более простому и привычному виду. Дальнейшие преобразования не требуют комментирования:

    Полученное логарифмическое уравнение, очевидно, можно решить методом замены переменной:

    графическим методом

    К решению логарифмических уравнений графическим методом обычно прибегают тогда, когда, во-первых, функции, отвечающие частям заданного логарифмического уравнения, довольно простые в плане построения их графиков, и, во-вторых, не видно других более простых вариантов получить решение.

    Пример. Графически так графически.

    Сколько корней имеет уравнение

    Сама формулировка задания подсказывает, что, скорее всего, решить уравнение, что называется, в лоб, и указать не только количеств корней, но и сами эти корни, не выйдет. Иначе бы вопрос стоял «решить уравнение». Действительно, путей решения этого уравнения не видно.

    Однако, количество корней удобно определять по графикам функций, соответствующих частям уравнения. Более того, в данном случае построить графики этих функций довольно просто. Нам хорошо известны функции и y=log2x и их графики. Графики интересующих нас функций и y=log2(x−2) будут иметь схожую геометрию с точностью до преобразований растяжения и симметрии. Поэтому, нам достаточно взять несколько опорных точек, чтобы изобразить нужные кривые. Давайте получим их, учитывая, что область определения функции — это x≤15/4 , а область определения функции y=log2(x−2) — это x>2 .

    Отмечаем эти точки на плоскости в прямоугольной системе координат, соединяем их плавными линиями, и чертеж готов:

    Видно, что графики имеют одну точку пересечения на отрезке от трех до пятнадцати четвертых. Больше их быть не может, так как функция убывает на указанном отрезке от до нуля, а функция y=log2(x−2) возрастает на этом отрезке от нуля до log2(7/4) .

    Это позволяет нам утверждать, что уравнение имеет один корень.

    через подбор корня и возрастание-убывание функций

    Решение логарифмических уравнений иногда приходится проводить, основываясь на возрастании и убывании функций, соответствующих частям уравнения. Это касается ситуаций, когда простые и привычные пути решения не просматриваются, но зато очевиден или легко подбирается корень логарифмического уравнения, а также легко обосновывается возрастание и убывание соответствующих функций. Приведем пример.

    Пример. Подбор и единственность.

    Для заданного уравнения не видно других подходов к решению, кроме как обращаться к функциям и их свойствам. Можно строить графики, но делать это для функции, отвечающей правой части уравнения, не очень приятно из-за довольно «большого» числа 11 и довольно «высокой» степени 5 . Попробуем обойтись без чертежа.

    Вместо этого обопремся на возрастание логарифмической функции, отвечающей левой части уравнения, и убывание функции, отвечающей правой части уравнения (она убывает, как возрастающая от убывающей). Это позволяет утверждать, что если уравнение имеет корень, то он единственный. А найти корень позволяет подбор по рекомендациям, данным в статье, посвященной методу решения уравнений через возрастание-убывание, – им является число 10 .

    На этом решение логарифмического уравнения завершено.

    методом оценки

    Пример. Оценить и дорешать.

    Своего рода оценочная классика: логарифм, синус, косинус, корень – все в одном уравнении. Итак, пробуем провести решение уравнения методом оценки. Но сначала, все же, квадратный корень из квадрата заменим модулем:

    Теперь к оценкам.

    Косинус принимает значения из отрезка −1 до 1 , а его модуль – [0, 1] . Следовательно, . С другой стороны, как четная степень, откуда . Таким образом, значения выражения из левой части уравнения не превосходят 1 , а значения выражения из правой части уравнения не меньше 1 . Это позволяет нам заменить решение исходного уравнения решением следующей системы

    Что делать с первым уравнением системы — сразу не понятно, зато вполне реально получить решение второго логарифмического уравнения:

    Теперь путем подстановки выясним, удовлетворяют ли найденные корни логарифмического уравнения 2 и 3 первому уравнению системы, а значит, системе в целом, и исходному уравнению.

    Давайте начнем с числа 3 , с ним все просто:

    Это верное равенство, следовательно, 3 – решение системы и корень исходного уравнения.

    А вот с числом 2 придется повозиться.

    Это равенство неверное (обоснуем чуть ниже), следовательно, 2 – не является решением системы, и не является корнем исходного уравнения.

    Таким образом, уравнение имеет один единственный корень 3 .

    А вот обещанное обоснование.

    Модуль косинуса равен единице, если аргумент косинуса равен . А не равно sin10 ни при каком целом k . Действительно, при k=0 , очевидно, sin10≠0 . При любом другом целом k равенство неверное, так как значения синуса находятся в отрезке от −1 до 1 .

    через ОДЗ

    Решение логарифмических уравнений часто требует нахождения ОДЗ: когда для проведения преобразований, когда для проверки. А порою ОДЗ позволяет даже получить решение.

    Пример. ОДЗ от безысходности.

    Беглый анализ уравнения, можно сказать, ставит в тупик относительно способа его решения. И почти единственным и, так или иначе, адекватным мероприятием выглядит нахождение ОДЗ. Что называется, в любом случае пригодится.

    Вот как все обернулось: ОДЗ есть пустое множество. Следовательно, уравнение не имеет корней.

    методом освобождения от внешней функции

    Признаемся, почти никогда для решения логарифмических уравнений не приходилось прибегать к методу освобождения от внешней функции. Однако для полноты картины не помешает привести решение соответствующего примера.

    Пример. Попробуй разгляди.

    Найдите решение уравнения

    Как тут действовать? Непонятно, что здесь можно предложить в альтернативу методу освобождения от внешней функции.

    А так заданное логарифмическое уравнение можно рассматривать как уравнение , где функция f такая, что . Очевидно, f – возрастающая функция как сумма двух возрастающих. Это позволяет освободиться от внешней функции f в уравнении , то есть, на ОДЗ перейти к уравнению .

    Здесь заметим, что область допустимых значений переменной для полученного уравнения совпадает с ОДЗ для исходного уравнения (она такова ). Значит, решение полученного уравнения является решением исходного уравнения.

    Остается решить логарифмическое уравнение , что можно сделать через потенцирование:

    Решение логарифмических уравнений через преобразование

    Редкий раз решение логарифмических уравнений обходится без проведения преобразований. Характерными для логарифмических уравнений являются преобразования, проводящиеся на базе свойств корней и степеней. Все они по отдельности разобраны в статье «Преобразование логарифмических уравнений». Здесь мы рассмотрим примеры решения логарифмических уравнений со сравнительно сложными последовательностями преобразований.

    Для начала напомним о необходимости использования модулей при вынесении четных показателей степеней из-под знаков логарифмов, а также при переходе от логарифмов произведений (частных) к суммам (разностям) логарифмов.

    Пример. Про модуль не забыть.

    Решите логарифмическое уравнение

    Просматривается возможность прийти к одинаковым логарифмам в левой части уравнения. Для начала вынесем показатель 2 из-под знака логарифма, и так как он есть четное число, то не забудем про модуль:

    Для раскрытия модуля нам потребуется ОДЗ для исходного уравнения:

    С учетом этого, имеем

    Дальше все просто:

    Теперь еще раз обратим внимание на преобразование квадратов, кубов и других степеней логарифмов. Уж очень часто приходится видеть неверные преобразования, типа , вместо , или , вместо и т.п.

    Пример. Квадраты логарифмов.

    Просматривается возможность упростить вид заданного логарифмического уравнения. Для начала перепишем его как , чтобы не наделать ошибок при преобразовании квадратов логарифмов. Дальше все довольно прозрачно:

    Теперь пора ввести новую переменную:

    Остается вернуться к старой переменной:

    Наконец, рассмотрим пример решения довольно сложного логарифмического уравнения, где сильно переплетены степени и логарифмы.

    Просматриваются черты основного логарифмического тождества. Сейчас поработаем в этом направлении. Но сначала давайте найдем область допустимых значений переменной x – она бывает нужна при проведении преобразований и при проведении проверки. Тем более, в нашем случае ОДЗ находится легко:

    Теперь приступаем к преобразованию:

    А дальше все легко:

    При найденных значениях переменной знаменатели дробей в уравнении в нуль не обращаются, а также 0 и 2 принадлежат ОДЗ для исходного уравнения, следовательно, являются его корнями.

    Решение однородных логарифмических уравнений

    В задачниках встречаются логарифмические уравнения, которые являются однородными уравнениями относительно некоторых логарифмов. Например, lg 2 (x+1)−lg(x+1)·lg(x−1)−2·lg 2 (x−1)=0 – это логарифмическое уравнение, однородное относительно логарифмов lg(x+1) и lg(x−1) .

    Решение однородных логарифмических уравнений завязано на преобразовании, заключающемся в делении обеих частей уравнения на «старшую» степень одного из логарифмов, что в дальнейшем позволяет ввести новую переменную. При этом необходимо отдельно проверять, не являются ли корнями уравнения те значения переменной, при которых обращается в нуль логарифм, на который планируется проводить деление. Давайте обратимся к конкретному примеру.

    Возьмем наше уравнение lg 2 (x+1)−lg(x+1)·lg(x−1)−2·lg 2 (x−1)=0 . Оно, как мы отметили, является однородным относительно логарифмов lg(x+1) и lg(x−1) . Давайте разделим обе части этого уравнения на старшую степень второго из этих логарифмов, то есть, на lg 2 (x−1) . Но, как известно, делить обе части уравнения мы имеем право только на выражение, не обращающееся в нуль, в противном случае можно потерять корни. Поэтому, стоит отдельно проверить, не являются ли корнями уравнения значения переменной, при которых lg 2 (x−1)=0 , а уже после этого спокойно проводить задуманное деление, не опасаясь потерять корни. В нашем случае lg 2 (x−1)=0 только при x=2 . Но x=2 не является решением исходного уравнения, так как его подстановка в исходное уравнение дает неверное числовое равенство. Теперь можно переходить к делению, считая lg 2 (x−1)≠0 . Имеем:

    Дальше напрашиваются следующие преобразования

    Остается закончить решение, воспользовавшись методом введения новой переменной. Приняв , имеем

    Урок-лекция по теме «Логарифмические уравнения. Основные методы их решения»

    Презентация к уроку

    В моём календарно-тематическом планировании на тему “Логарифмические уравнения” отводится 3 часа. Я их разбиваю следующим образом:

    1 возможный вариант:

    1 урок — лекция “Логарифмические уравнения. Основные методы их решения”. В конце лекции задаю блок уравнений обязательного уровня.

    2 урок – решение уравнений различного типа и сложности (это зависит от уровня математической подготовки класса, использую индивидуальный подход).

    3 урок – решение уравнений и зачётная работа с само- и взаимопроверкой, а также проверкой учителем.

    2 возможный вариант:

    1 урок — лекция “Логарифмические уравнения. Основные методы их решения”, но только два метода – на основании определения и потенцирования. Решение уравнений на применение этих методов.

    2 урок – лекция “Логарифмические уравнения. Основные методы их решения”, два других метода – подстановки и логарифмирования. Решение уравнений на применение этих методов.

    3 урок – решение уравнений и зачётная работа с само- и взаимопроверкой, а также проверкой учителем.

    Вариант подачи темы зависит от подготовленности класса.

    Лекция “Логарифмические уравнения. Основные методы их решения”.

    Эпиграфом своей сегодняшней лекции я привожу слова Ричарда Олдингтона (1892 – 1962гг., английский поэт, прозаик, критик): “Ничему тому, что важно знать, научить нельзя, — всё, что может сделать учитель, это указать дорожки”.

    А так же – русскую народную пословицу: “Кто говорит – тот сеет, кто слушает – тот собирает”.

    В самом начале моей лекции я хотела бы обратить ваше внимание на следующее. При решении логарифмических уравнений применяют преобразования, которые не приводят к потере корней, но могут привести к приобретению посторонних корней. Поэтому проверка каждого из полученных корней обязательна, если нет уверенности в равносильности уравнений. Здесь возможны два подхода:

    Проверка путём подстановки полученных решений в исходное уравнение.

    Нахождение области допустимых значений уравнения (ОДЗ). Тогда корнями могут быть только те числа, которые принадлежат этой области.

    В своей лекции я буду использовать оба этих подхода, а ваше право уже самим выбирать, какой лично вам больше нравится. Следует отметить, что при решении логарифмических неравенств возможен только один из них: ОДЗ!

    Основные методы решения логарифмических уравнений.

    Уравнение, содержащее неизвестное под знаком логарифма или (и) в его основании, называется логарифмическим уравнением.

    Решение логарифмических уравнений на основании определения логарифма.

    Определение логарифма: Логарифмом числа b по основанию а называется показатель степени, в которую нужно возвести основание а, чтобы получить число b. Т. е.

    Таким образом, применяя его к нашей теме, мы получим следующее:

    при этом

    Пример 1:

    Число 16 удовлетворяет ОДЗ, значит 16 – корень исходного уравнения.

    Пример 2:

    Проверка: — верно, значит число 4 – корень исходного уравнения.

    Пример 3:

    По определению логарифма значит

    Ответ:

    А сейчас мы рассмотрим пример, в котором в основании логарифма уже не число, а выражение, содержащее переменную. Т. е. уравнение будет иметь вид при этом Хочу отметить особо, что рассуждения НЕ ИЗМЕНИЛИСЬ!

    Пример 4:

    ОДЗ:.

    С учётом ОДЗ получим, что решением данного уравнения является число 2.

    Как мы видим, наличие выражения с переменной в основании влияет лишь на ОДЗ, а не на ход рассуждений. Кроме того, данное уравнение можно решать, не прибегая к нахождению ОДЗ, а просто в конце выполнить проверку.

    Под потенцированием понимается переход от равенства, содержащего логарифмы, к равенству, не содержащему их.

    , где

    Пример 5:

    — верно.

    — не верно.

    Значит, только число 1 является решением исходного уравнения.

    Если же в основании – выражение с переменной, то рассуждения не меняем! В этом случае уравнение будет иметь вид

    , где

    И пример такого уравнения можно разобрать на предыдущем примере 5.

    Пример 6:

    — верно.

    — не верно.

    Значит, только число 1 является решением исходного уравнения.

    ОДЗ для данного уравнения выглядит следующим образом:

    Мы видим, что в этом уравнении рациональнее выполнить проверку, а не искать ОДЗ. Но ещё раз повторюсь, что при решении неравенств ОДЗ находить придётся ОБЯЗАТЕЛЬНО.

    Рассмотрим пример, который, на первый взгляд, не может относиться к данному типу уравнений.

    Пример7:

    Сделаем замену , получим воспользовавшись свойством логарифма (сумма логарифмов равна логарифму произведения подлогарифмических выражений: ), получим уравнение которое в свою очередь замечательно решается методом потенцирования, т.е. А это линейное уравнение, решив которое, получим

    Проверка: — верно.

    Замечу, что часто перед применением какого-либо метода решений, необходимо преобразовать уравнение, применив различные свойства логарифмов. Предыдущий пример, тому подтверждение.

    Данный метод мы достаточно часто встречаем в математике, вспомните тригонометрические или показательные уравнения. Поэтому применение его при решении логарифмических уравнений я вам покажу на примере.

    Пример 8: .

    В этом уравнении рациональней найти ОДЗ:

    Пусть , тогда уравнение примет вид

    ,

    Значит или . А это уравнения, которые мы решим, используя определение: 1)

    2)

    Мы видим, что оба корня удовлетворяют ОДЗ, значит оба числа являются решениями исходного уравнения.

    Ответ:

    Если в основании логарифма лежит выражение с переменной, то уравнение в общем виде будет выглядеть следующим образом:

    , где

    И опять, вы сами выбираете: ОДЗ или проверка.

    Пример 9: .

    ОДЗ:

    Приведём логарифмы к одному основанию – 7, пользуясь свойством перехода к новому основанию , получим:

    , выполним подстановку , получим уравнение

    ,

    или.

    Оба числа удовлетворяют ОДЗ.

    Ответ:

    Данный метод является “обратным” методу потенцирования, т. е. мы от уравнения без логарифмов переходим к уравнению, их содержащему.

    , при этом

    Этот метод обычно используется, если в уравнении есть показательные функции, логарифмы – в показателе. Рассмотрим этот метод на примере.

    Пример 10:

    ОДЗ:

    Прологарифмируем обе части уравнения по основанию 3:

    а теперь воспользуемся свойством логарифмов , получим

    Выполним подстановку , получим уравнение

    или.

    Оба числа удовлетворяют ОДЗ.

    Этот пример показывает, что при решении логарифмических уравнений, возможна комбинация нескольких методов. А значит необходимо уметь пользоваться каждым из них. Научиться этому – теперь ваша задача.

    Итак, сегодня мы с вами рассмотрели основные методы решения логарифмических уравнений:

    • На основании определения логарифма.
    • Метод потенцирования.
    • Метод постановки.
    • Метод логарифмирования.

    Главным, по моему мнению, является метод, основанный на определении логарифма. Практически в каждом их других методов происходит “выход” на него. Кроме того, на примерах мы увидели, что все методы взаимосвязаны, в “чистом” виде при решении уравнений не используется ни один из них. Поэтому вам необходимо уметь пользоваться КАЖДЫМ!

    Для отработки навыков решения логарифмических уравнений, я вам предлагаю следующее домашнее задание. Уравнения являются базовыми, т. е. решать их должен уметь решать каждый. Отмечу, что подборка сделана из открытого банка заданий для экзамена по математике ЕГЭ http://mathege.ru .

    № п/пУравненияКомментарии (даётся для слабых учащихся)
    1Пользуясь определением
    2Пользуясь определением
    3Потенциирование
    4Потенциирование
    5Потенциирование
    6Потенциирование
    7Применить свойства логарифмов и затем потенциировать
    8Применить свойства логарифмов и затем потенциировать
    9Пользуясь определением
    10Пользуясь определением, выход на показательное уравнение
    11Показательное уравнение, выход на логарифмическое

    Замечание: домашнее задание распечатано на листах для каждого ученика.

    Решение задач по теме “Логарифмические уравнения”. Зачёт.

    Уравнения (примерные, зависит от математической подготовки учащихся).

    Методическая разработка «Методы решение логарифмических уравнений»

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    Выберите документ из архива для просмотра:

    Выбранный для просмотра документ Методы решения логарифмических уравнений.docx

    Процесс решения любого логарифмического уравнения заключается в переходе от уравнения с логарифмами к уравнению без них

    И это решение состоит из двух равноценных частей:

    1) нахождение области допустимых значений (ОДЗ),

    2) решение самого уравнения.

    Эти части решаются независимо друг от друга. Главное — в самом конце не забыть результаты сопоставить, лишнее выбросить.

    ОДЗ — это те значения х , которые разрешены для исходного примера . А как искать ОДЗ? Внимательно осматриваем пример и ищем опасные места. Места, в которых возможны запретные действия . Таких запретных действий в математике очень мало. ( Нельзя делить на ноль, в корнях чётной степени подкоренное выражение должно быть неотрицательным, выражение стоящее под логарифмом должно быть неотрицательным и основание логарифма а >0 и а ≠1.)

    П ростейшие логарифмические уравнения

    Умение решать простейшие логарифмические уравнения — это очень важно. Дело в том, что даже самые злые и замороченные уравнения обязательно сводятся к простейшим! Собственно, простейшие уравнения — это финишная часть решения любых уравнений.

    Уравнения вида log а f(х) = log а g(х)

    Простейшее уравнение log а f(х) = log а g(х) решается методом потенцирования. Под потенцированием понимается переход от равенства, содержащего логарифмы, к равенству, не содержащему их:
    log а f(х) = log а g(х) f(х) = g(х) , при f(х)>0, g(х)>0 , а > 0, а≠ 1. т.е. если равны логарифмы по одному и тому же основанию, то и равны логарифмируемые выражения. В виде равносильного перехода:

    Ликвидировать логарифмы безо всяких опасений можно, если у них:

    а) одинаковые числовые основания

    в) логарифмы слева-справа чистые (безо всяких коэффициентов) и находятся в гордом одиночестве

    -В уравнении log 3 х = 2log 3 (3х-1) убирать логарифмы нельзя. Двойка справа не позволяет . Коэффициент.

    — В примере log 3 х+log 3 (х+1) = log 3 (3+х) тоже нельзя потенцировать уравнение. В левой части нет одинокого логарифма. Их там два .

    Короче, убирать логарифмы можно, если уравнение выглядит так и только так: log а (. ) = log а (. )

    В скобках, где многоточие, могут быть какие угодно выражения. Простые, суперсложные, всякие. Какие угодно. Важно то, что после ликвидации логарифмов у нас остаётся более простое уравнение

    Пример 1. Решите уравнение:

    Решение: способ 1 . В область допустимых значений (ОДЗ) входят только те x , при которых выражение, находящееся под знаком логарифма, больше нуля. Эти значения определяются следующей системой неравенств:

    Видим логарифмы по одному и тому же основанию равны, значит, равны и логарифмируемые выражения .

    В область допустимых значений входит только первый корень. Ответ: 7. ОДЗ можно было не решать, а просто записать. В конце каждый корень подставить в ОДЗ. Если с каждым неравенством ОДЗ получится верное числовое неравенство, то он идет в Решение: способ 2 . Если это уравнение решим путем равносильных переходов , то ОДЗ нашли бы без всяких квадратных неравенств и пересечений. Итак

    Уравнение х 2 — 5х – 14 = 0 имеет корни х 1 = 7, х 2 = -2. В область допустимых значений входит только первый корень. Ответ: x = 7.

    Пример 2 . Решите уравнение

    Решение. Решим методом равносильных переходов . Тогда уравнение равносильно системе

    Корни уравнения -2 и 5. Только -2 ϵ ОДЗ . Ответ: -2

    Итак уравнения такого вида решили 2-мя способами: 1) отдельно найдя ОДЗ и отдельно решив само уравнение; 2) используя равносильные переходы. Какой способ вам по душе?

    Уравнение log a f ( x ) = b п ростейшее логарифмическое уравнение, где а и b — числа; а >0, a ≠1. Переменная х присутствует только внутри аргумента.

    1 ) Применение определения логарифма

    Решение уравнений применением определения логарифма

    Решение уравнения
    основано на применении определения логарифма и в решении равносильного уравнения

    Для уравнений log a f ( x ) = b записывать область определения не нужно ( f ( x ) >0 ) , потому что она будет выполняться автоматически . Так как в какую бы степень мы бы не возводили положительное число а , на выходе мы все равно получим положительное число, т.е. если а > 0, то a b > 0 всегда => f ( x ) = a b > 0.

    Пример 1 . Решите уравнение log 5 ( x – 2) = 1

    Решение: Переменная х встречается лишь в одном log и стоит в его аргументе, значит находить ОДЗ не надо. log 5 ( x – 2) = 1  x – 2 = 5 1  x – 2 = 5  x = 7. Ответ: 7.

    Пример 2 . Решите уравнение

    Решение: Три раза выполним переход: log a f ( x ) = b f ( x ) = a b

    2). Решение простейшего логарифмического уравнения log a f ( x ) = b представлением числа в виде логарифма b = log a a b (методом потенцирования).

    Пример 3 . Решите уравнение:

    Решение: Это простейшее логарифмическое уравнение, поэтому нет необходимости найти ОДЗ, потому что 3х – 1>0 будет выполняться автоматически. Слева у нас стоит выражение с логарифмом, а справа – число . Что делать? Нужно сделать так, чтобы справа тоже было выражение с логарифмом по основанию 0,5 а затем просто сбросить логарифмы. Так как −3 = −3*1 = -3* log 0,5 0,5= log 0,5 0,5 −3 тогда уравнение примет вид: log 0,5 (3 x − 1) = log 0,5 0,5 −3

    Все десятичные дроби переводите в обычные, когда вы решаете логарифмическое уравнение.

    Заметим что 0,5 -3 = (1/2) −3 = (2 -1 ) -3 = 2 3 = 8 и получим

    Пример 4 . Решите уравнение

    Решение: Это простое логарифмическое уравнение, поэтому можно не найти ОДЗ. Первый шаг- дробь справа представим в виде логарифма. Получим:

    Учитывая, что 16 1/4 = (2 4 ) 1/4 = 2

    избавляемся от знака логарифма и получаем обычное иррациональное уравнение: где надо будет учесть ОДЗ.

    , решим равносильным переходом к системе:

    Из полученных корней нас устраивает только первый, так как второй корень меньше нуля. Единственным ответом будет число 9. Ответ: 9 .

    Уравнения, решаемые применением свойств логарифмов

    Схема решения не простых логарифмических уравнений

    1. Привести уравнение с помощью свойств логарифмов к виду:

    2. Решить равносильное уравнение

    f ( x ) = a b или f ( x ) = g ( x ) по их алгоритму .

    Пример 1. Решите уравнение

    Если lg ( x – 1) переведем в правую часть уравнения, то получим уравнение вида log а f(х) = log а g(х).

    Если неравенства неудобные, ОДЗ можно не решать. Достаточно подставить результаты уравнения в записанные условия ОДЗ и проверить, какие решения проходят. Их и взять за ответы

    Пример 2 . Решите уравнение

    Если в уравнении содержатся логарифмы с разными основаниями, то, прежде всего, следует свести все логарифмы к одному основанию, используя формулы перехода , и

    Пример 3 . Решите уравнение

    Решение. ОДЗ: х > 0. Сразу видно, что у логарифмов основания разные. Используя формулу придем к одинаковому основанию

    Уравнения, решаемые введением новой переменной

    Если, в уравнение неоднократно, встречается некоторое определенное выражение, то оно решается введением новой переменной

    Пример 1 . Решите уравнение

    ОДЗ: x > 0. Введем новую переменную тогда получим квадратное уравнение:

    Пример 2 . Решите уравнение

    Оба корня удовлетворяют ОДЗ нашего уравнения.

    Пример 3. Решите уравнение 4 log 25 5x + log 2 5 x – 5 = 0; ОДЗ: x > 0.

    Тут 2 основания, выполним переход к основанию 5, используя формулу

    2(log 5 5 + log 5 x) + log 2 5 x – 5 = 0.

    2(1 + log 5 x) + log 2 5 x – 5 = 0.

    Пусть log 5 x = t, тогда 2(1 + t) + t 2 – 5 = 0;

    t = – 3 или t = 1; Обратно переходим на обозначение log 5 x = t:

    x = 1/125. Оба корня удовлетворяют ОДЗ. Ответ:

    Пример 4. Решите уравнение Решение: Область допустимых значений:

    Решать систему необходимости нет. Пусть log 2 (5x – 1) = t, тогда

    Уравнения, содержащие неизвестное и в основании и в аргументе.

    Уравнение log f ( x ) g ( x ) = b похож е простейшему у равнению log a f ( x ) = b Сходство: в обеих уравнениях в левой части log , в правой число b . Отличие в том, что в первой переменная х присутствует не только внутри аргумента, но и в основании логарифма .

    Но мы должны учесть определенные требования. 1) аргумент каждого из логарифмов должен быть больше 0: 2) осн о вание должно быть не только больше 0, но и отлично от 1

    1 ) Применение определения логарифма

    2 )Представление числа в виде логарифма

    По определению логарифма х 2 – 5х + 10 = (х — 1) 2 х 2 – 5х + 10 = :х 2 – 2х + 1, -3х = -9 х = 3

    Проверим принадлежность х = 3 ОДЗ: 3 2 – 5*3 + 10 > 0 верно, 3 – 1 > 0 верно 3 – 1 ≠ 1 верно

    Пример 2 . Решите уравнение log х+1 (2 x 2 +1)=2 Решение: Решим методом равносильных переходов. Заменяем 2 на так как 2=2*1=2* log х + 1 (х+1)= log х + 1 (х+1) 2 тогда получим: log х+1 (2x 2 +1)= log х+1 (x+1) 2

    Наше уравнение содержит неизвестное и в основании и в аргументе. Поэтому 1) аргумент каждого из логарифмов должен быть больше 0. 2) основание должно быть не только больше 0, но и ≠ 1 . В итоге получим систему:

    Решим уравнение 2х 2 +1=(х+1) 2 , 2х 2 + 1 = х 2 + 2х + 1 х 2 — 2x = 0  x ( x — 2) = 0  x=2 или x=0. х=0 не соответствует системе. Ответ: 2.

    Способ 2. ОДЗ: по определению логарифма получим : 2х 2 +1 = (х+1) 2 , 2х 2 +1 = х 2 + 2х + 1, х 2 – 2х = 0  x ( x – 2) = 0  x = 0, x = 2. Корень х = 0 не удовлетворяет третьему неравенству ОДЗ.

    Показательно – логарифмические уравнения

    При решении уравнений, содержащих переменную и в основании, и в показателе степени, используется метод логарифмирования. Если при этом в показателе степени содержится логарифм, то обе части уравнения надо прологарифмировать по основанию этого логарифма.

    Пример 1. Решить уравнение : х 1 – lgx = 0.01. Решение: ОДЗ: x > 0, x ≠ 1. Прологарифмировав обе части уравнения по основанию 10, получим уравнение:

    Положив t = lg x , придем к уравнению t 2 t – 2 = 0 , откуда t 1 = -1, t 2 = 2. Таким образом, задача свелась к решению следующей совокупности уравнений:

    Оба найденных значения входят в ОДЗ. Ответ: 0,1; 100

    Пример 2 . Решить уравнение 3 2log 4 x +2 =16 x 2 .

    Решение . Область определения x >0. Прологарифмируем обе части по основанию 4.

    Используя свойства логарифмов, получим

    Функционально – графический метод .

    В одной и той же системе координат строим графики функции у= log 2 x и у = 3 – x

    Ответ: 2.

    Обычно графически метод применяется, если трудно найти других методов. Графически метод менее точный . Целесообразно его использовать, если стоит вопрос «Сколько корней имеет уравнение».

    Метод использования монотонности функции

    Есть способ, позволяющий не строить графики. Он заключается в следующем: если одна из функции y = f ( x ) возрастает, а другая y = g ( x ) убывает на промежутке Х, то уравнение f ( x ) = g ( x ) имеет не более одного корня на промежутке Х.

    Если корень имеется, то его можно угадать.

    Пример 1. Решить уравнение: l og 3 x = 4- x Решение: ОДЗ х > 0. Так как функция у= log 3 х возрастающая, а функция у = 4-х убывающая на (0; + ∞ ), то заданное уравнение на этом интервале имеет один корень. Подбором определяем х = 3. Ответ: 3 .

    Пример 2 . Решите уравнение : log 3 ( x + 1) + log 4 (5 x + 6) = 3. ОДЗ: х > -1

    Решение: у = log 3 ( x + 1) – возрастающая функция, y = log 3 ( x + 1) – тоже возрастающая. Сумма двух возрастающих функции дает возрастающую функцию. В правой части постоянная функция у = 3. Значит уравнение имеет не более одного корня. Подбором определяем х = 2. Ответ: 2.


    источники:

    http://urok.1sept.ru/articles/650348

    http://infourok.ru/metodicheskaya-razrabotka-metody-reshenie-logarifmicheskih-uravnenij-4110454.html