Решение логарифмического уравнения есть неизвестное в основании

Решение уравнений, содержащих неизвестную в основании логарифма

Разделы: Математика

Цели урока:

  • обучающие: закрепить основные способы решения логарифмических уравнений: по определению логарифма с учётом области определения, на основании свойств монотонности (потенцирование) с учётом равносильности перехода, переход к новому основанию, введение новой переменной; рассмотреть некоторые приемы быстрого решения уравнений рассматриваемого типа;
  • развивающие: содействовать развитию логического мышления учащихся; развивать умения рассуждать, сравнивать, осмысливать материал; развивать у учащихся умения анализа условия задачи перед выбором способа ее решения; развивать навыки исследовательской деятельности; учить видеть задачу целиком, логически мыслить при переходе от частного к общему; развивать навыки обобщения;
  • воспитывающие: воспитание познавательного интереса, элементов культуры общения; побуждение учащихся к преодолению трудностей в процессе умственной деятельности; воспитание у учащихся уверенности в себе, веры в свои силы в нестандартной ситуации.

Тип урока: урок комплексного применения знаний и навыков.

Ход урока:

1. Организационный момент

(сообщить учащимся тему урока, поставить перед ними задачи урока), (на партах у каждого раздаточный материал см. Приложение 1).

Изучив основные свойства логарифмической функции, правила вычисления логарифмов, овладев основными приемами решения логарифмических уравнений и неравенств, наша основная задача на сегодняшний урок – обобщить методы решения логарифмических уравнений, содержащих переменную в основании логарифма.

2. Активизация знаний учащихся.

Устная работа:

  1. Найдите область определения функций:

(- 4; — 3) U (- 3; — 1) U (1;∞)

  1. Каким способом решается уравнение:

. Ответ: по определению логарифма. Решений нет!!

  1. При каком значении параметра а функция определена на множестве (1; ∞); если изменить основание, значение параметра изменится?

Ответ: а 1

Ответ: а 1

Ответ: а > 1

3. Основная часть урока.

Слайд 2. Виды уравнений и методы решения

На области определения по определению логарифма

Или

Пример Решение: x=6. Ответ: 6.

слайд 5.

На области определения по определению логарифма

Пример:

Решение: 7x-14=3-2x; 9x=17; x=17/9; НО. промежутки не пересекаются, значит, решений нет!! Ответ: решений нет.

Пример:Каким способом решается уравнение?

предполагаемый ответ учащихся: решаем, применяя определение логарифма (решение учеником письменно на доске и в тетрадях)

Решение:

при х= 6 верно. Ответ: 6

Слайд 8

Слайд 10. На найденной области определения

решим уравнение: , , х = 0 или х = 1,5

Ответ: 1,5

Слайд 11 Следующий вид уравнения:

Одна и та же функция в основании логарифма

Вопрос: Каким способом решать?

Один из вариантов ответов: область определения достаточно объёмная, поэтому переходим к следствию

Найдём корни этого уравнения и подстановкой в первоначальное логарифмическое, проверим.

Слайд 12. Одна и та же функция является подлогарифмическим выражением

Вопрос: Каким способом решать? Один из вариантов ответов: область определения достаточно объёмная, поэтому переходим к совокупности уравнений

Найдём корни этого уравнения и подстановкой в первоначальное логарифмическое, проверим.

Слайд 14. На промежутке решаем совокупность уравнений:

Слайд 15. Проверяем на принадлежность этих чисел области определения, делаем вывод: решением уравнения являются числа: ; . Ответ: ;.

Слайд 16 Следующий вид уравнений:

Область определения достаточно объёмная

Найдём корни этого уравнения и подстановкой в первоначальное логарифмическое, проверим.

Слайд 17. Как вы думаете, каким способом лучше решать это уравнение?

Один из вариантов ответов: переход к новому основанию (числовому)

Слайд 18. или к буквенному

Слайд 19. Пример:

(решение с подробным комментарием письменно на доске и в тетрадях).

Решение: Очевидно . Выполним преобразования основания и подлогарифмического выражения правой части уравнения

,

Перейдём в правой части уравнения к новому основанию х, применяя свойство: логарифм произведения равен сумме логарифмов множителей по такому же основанию

,

Выполним замену переменных

Получим уравнение , ,

Выполнив обратную замену, получим

Х= — 1.

Очевидно – 1 не входит в область определения заданного уравнения.

Или , , .

По свойству: если коэффициенты квадратного уравнения таковы, что

a + c – b =0, то Х= — 1, Х= ½. Ответ: ½

Слайд 20

Следующий тип уравнений

Слайд 21. Пример

Ответ: 5,5.

Слайд 22 «Комбинированные» виды уравнений

Пример

Решение: очевидно

Слайд 23 , ,

(очевидно, последнее уравнение решений не имеет)

Слайд 24 , . Ответ:

Слайд 25 Уравнения, левая часть которых – сумма взаимно обратных слагаемых

Пример: (*)

Очевидно, каждое слагаемое равно 1.

Получим систему, равносильную уравнению (*)

x = 2. Ответ: 2

Слайд 27. В чём отличие в решении следующего уравнения?

(*)

Равенство взаимно обратных слагаемых верно при условии х > 0,5, х ≠ 1,5.

На рассматриваемом промежутке уравнение (*) равносильно совокупности

Слайд 28

с учётом области определения: Ответ: 1

Подведение итогов урока

4. Домашнее задание.

Слайд 30. Решите уравнения: ,

P. S. Урок проведён в 10 классе физико-химического профиля. Уложились за урок за счёт экономии времени: на партах лежали у каждого ученика листы с напечатанными типами уравнений, учащиеся записывали только метод решения (без области определения и решения). Эти листы ученики забрали с собой и вклеили в тетрадь.

В слабом классе лучше потратить на эту тему сдвоенный урок.

P. S. S. В кабинете один компьютер с выходом на экран телевизора. В связи с этим, на слайдах текст печатается очень крупно.

Логарифмическое уравнение: решение на примерах

Как решить логарифмическое уравнение? Этим вопросом задаются многие школьники, особенно в преддверии сдачи ЕГЭ по математике. Ведь в задании С1 профильного ЕГЭ могут встретиться именно логарифмические уравнения.

Уравнение, в котором неизвестное находится внутри логарифмов, называется логарифмическим. Причем неизвестное может находится как в аргументе логарифма, так и в его основании.

Способов решения таких уравнений существует несколько. В этой статье мы разберем способ, который легко понять и запомнить.

Как решать уравнения с логарифмами: 2 способа с примерами

Решить логарифмическое уравнение можно разными способами. Чаще всего в школе учат решать логарифмическое уравнение с помощью определения логарифма. То есть мы имеем уравнение вида:Вспоминаем определение логарифма и получаем следующее:Таким образом мы получаем простое уравнение, которое сможем легко решить.

При решении логарифмических уравнений важно помнить об области определения логарифма, т.к. аргумент f(x) должен быть больше ноля. Поэтому после решения логарифмического уравнения мы всегда делаем проверку!

Давайте посмотрим, как это работает на примере:

Воспользуемся определением логарифма и получим:

Теперь перед нами простейшее уравнение, решить которое не составит труда:

Сделаем проверку. Подставим найденный Х в исходное уравнение:Так как 3 2 = 9, то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Основной минус данного метода решения логарифмических уравнений в том, что многие ребята путают, что именно нужно возводить в степень. То есть при преобразовании logaf(x) = b, многие возводят не a в степень b, а наоборот b в степень a. Такая досадная ошибка может лишить вас драгоценных баллов на ЕГЭ.

Поэтому мы покажем еще один способ решения логарифмических уравнений.

Чтобы решить логарифмическое уравнение, нам нужно привести его к такому виду, когда и в правой, и в левой части уравнения будут стоять логарифмы с одинаковыми основаниями. Это выглядит вот так:

Когда уравнение приведено к такому виду, то мы можем «зачеркнуть» логарифмы и решить простое уравнение. Давайте разбираться на примере.

Решим еще раз то же самое уравнение, но теперь этим способом:В левой части у нас логарифм с основанием 2. Следовательно, правую часть логарифма нам нужно преобразовать так, чтобы она тоже содержала логарифм с основанием 2.

Для этого вспоминаем свойства логарифмов. Первое свойство, которое нам здесь понадобится – это логарифмическая единица. Напомним его:То есть в нашем случае:Возьмем правую часть нашего уравнения и начнем ее преобразовывать:Теперь нам нужно 2 тоже внести в логарифмическое выражение. Для этого вспоминаем еще одно свойство логарифма:

Воспользуемся этим свойством в нашем случае, получим:Мы преобразовали правую часть нашего уравнения в тот вид, который нам был нужен и получили:Теперь в левой и в правой частях уравнения у нас стоят логарифмы с одинаковыми основаниями, поэтому мы можем их зачеркнуть. В результате, получим такое уравнение:

Да, действий в этом способе больше, чем при решении с помощью определения логарифма. Но все действия логичны и последовательны, в результате чего шансов ошибиться меньше. К тому же данный способ дает больше возможностей для решения более сложных логарифмических уравнений.

Разберем другой пример:Итак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом:После преобразования правой части наше уравнение принимает следующий вид:Теперь можно зачеркнуть логарифмы и тогда получим:Вспоминаем свойства степеней:

Теперь делаем проверку:то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Еще один пример решения логарифмического уравнения:Преобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим:Теперь преобразуем правую часть уравнения:Выполнив преобразования правой и левой частей уравнения, мы получили:Теперь мы можем зачеркнуть логарифмы:

Решим данное квадратное уравнение, найдем дискриминант:

Сделаем проверку, подставим х1 = 1 в исходное уравнение:Верно, следовательно, х1 = 1 является корнем уравнения.

Теперь подставим х2 = -5 в исходное уравнение:Так как аргумент логарифма должен быть положительным, выражение не является верным. Следовательно, х2 = -5 – посторонний корень.

Пример решения логарифмического уравнения с разными основаниями

Выше мы решали логарифмические уравнения, в которых участвовали логарифмы с одинаковыми основаниями. А что же делать, если основания у логарифмов разные? Например,

Правильно, нужно привести логарифмы в правой и левой части к одному основанию!

Итак, разберем наш пример:Преобразуем правую часть нашего уравнения:

Мы знаем, что 1/3 = 3 -1 . Еще мы знаем свойство логарифма, а именно вынесение показателя степени из логарифма:Применяем эти знания и получаем:Но пока у нас есть знак «-» перед логарифмом в правой части уравнения, зачеркивать мы их не имеем права. Необходимо внести знак «-» в логарифмическое выражение. Для этого воспользуемся еще одним свойством логарифма:

Тогда получим:Вот теперь в правой и левой части уравнения у нас стоят логарифмы с одинаковыми основаниями и мы можем их зачеркнуть:Делаем проверку:Если мы преобразуем правую часть, воспользовавшись свойствами логарифма, то получим:Верно, следовательно, х = 4 является корнем уравнения.

Пример решения логарифмического уравнения с переменными основаниями

Выше мы разобрали примеры решения логарифмических уравнений, основания которых были постоянными, т.е. определенным значением – 2, 3, ½ … Но в основании логарифма может содержаться Х, тогда такое основание будет называться переменным. Например, logx+1(х 2 +5х-5) = 2. Мы видим, что основание логарифма в данном уравнении – х+1. Как же решать уравнение такого вида? Решать мы его будем по тому же принципу, что и предыдущие. Т.е. мы будем преобразовывать наше уравнение таким образом, чтобы слева и справа были логарифмы с одинаковым основанием.Преобразуем правую часть уравнения:Теперь логарифм в правой части уравнения имеет такое же основание, как и логарифм в левой части:Теперь мы можем зачеркнуть логарифмы:Но данное уравнение неравносильно исходному уравнению, так как не учтена область определения. Запишем все требования, относящиеся к логарифму:

1. Аргумент логарифма должен быть больше ноля, следовательно:

2. Основание логарифма должно быть больше 0 и не должно равняться единице, следовательно:

Сведем все требования в систему:

Данную систему требований мы можем упростить. Смотрите х 2 +5х-5 больше ноля, при этом оно приравнивается к (х + 1) 2 , которую в свою очередь так же больше ноля. Следовательно, требование х 2 +5х-5 > 0 выполняется автоматически и мы можем его не решать. Тогда наша система будет сведена к следующему:Перепишем нашу систему:Следовательно, наша система примет следующий вид:Теперь решаем наше уравнение:Справа у нас квадрат суммы:Данный корень удовлетворяет наши требования, так как 2 больше -1 и не равно 0. Следовательно, х = 2 – корень нашего уравнения.

Для полной уверенности можем выполнить проверку, подставим х = 2 в исходное уравнение:

Т.к. 3 2 =9, то последнее выражение верно.

Как сделать проверку

Еще раз обращаем ваше внимание, что при решении логарифмических уравнений необходимо учитывать область допустимых значений. Так, основание логарифма должно быть больше ноля и не должно равняться единице. А его аргумент должен быть положительным, т.е. больше ноля.

Если наше уравнение имеет вид loga (f(x)) = loga (g(x)), то должны выполняться следующие ограничения:

После решения логарифмического уравнения нужно обязательно сделать проверку. Для этого вам необходимо подставить получившееся значения в исходное уравнение и посчитать его. Времени это займет немного, зато позволит не записать в ответ посторонние корни. Ведь так обидно правильно решить уравнение и при этом неправильно записать ответ!

Итак, теперь вы знаете, как решить логарифмическое уравнение с помощью определения логарифма и с помощью преобразования уравнения, когда в обеих его частях стоят логарифмы с одинаковыми основаниями, которые мы можем «зачеркнуть». Отличное знание свойств логарифма, учет области определения, выполнение проверки – залог успеха при решении логарифмических уравнений.

Решение логарифмических уравнений. Часть 1

Решение логарифмических уравнений. Часть 1.

Логарифмическим уравнением называется уравнение, в котором неизвестное содержится под знаком логарифма ( в частности, в основании логарифма).

Простейшее логарифмическое уравнение имеет вид:

Решение любого логарифмического уравнения предполагает переход от логарифмов к выражениям, стоящим под знаком логарифмов. Однако это действие расширяет область допустимых значений уравнения и может привести к появлению посторонних корней. Чтобы избежать появления посторонних корней, можно поступить одним из трех способов:

1. Сделать равносильный переход от исходного уравнения к системе, включающей область допустимых значений уравнения:

в зависимости от того, какое неравенство или проще.

Если уравнение содержит неизвестное в основании логарифма:

,

то мы переходим к системе:

2. Отдельно найти область допустимых значений уравнения, затем решить уравнение и проверить, удовлетворяют ли найденные решения ОДЗ уравнения.

3. Решить уравнение, и потом сделать проверку: подставить найденные решения в исходное уравнение, и проверить, получим ли мы верное равенство.

Логарифмическое уравнение любого уровня сложности в конечном итоге всегда сводится к простейшему логарифмическому уравнению.

Все логарифмические уравнения можно условно разделить на четыре типа:

1 . Уравнения, которые содержат логарифмы только в первой степени. Они с помощью преобразований и использования свойств логарифмов приводятся к виду

Пример. Решим уравнение:

Внимание! Мы всегда ищем ОДЗ исходного уравнения, а не того, которое получится в процессе преобразований. То есть ОДЗ записываем перед тем, как переходим к решению уравнения.

Для упрощения вычислений давайте перенесем логарифмы с отрицательными коэффициентами в противоположную часть уравнения — из соображений, что умножать проще, чем делить:

Представим число 2 в виде логарифма по основанию 4:

Получим уравнение:

Приравняем выражения, стоящие под знаком логарифма:

Проверим, удовлетворяет ли наш корень ОДЗ уравнения:

Ответ: х=5

2 . Уравнения, которые содержат логарифмы в степени, отличной от 1 (в частности, в знаменателе дроби). Такие уравнения решаются с помощью введения замены переменной.

Пример. Решим уравнение:

Найдем ОДЗ уравнения:

Уравнение содержит логарифмы в квадрате, поэтому решается с помощью замены переменной.

Важно! Прежде чем вводить замену, нужно «растащить» логарифмы, входящие в состав уравнения на «кирпичики», используя свойства логарифмов.

При «растаскивании» логарифмов важно очень аккуратно применять свойства логарифмов:

Кроме того, здесь есть еще одно тонкое место, и, чтобы избежать распространенной ошибки, воспользуемся промежуточным равенством: запишем степень логарифма в таком виде:

.

Подставим полученные выражения в исходное уравнение. Получим:

Теперь мы видим, что неизвестное содержится в уравнении в составе . Введем замену: . Так как может принимать любое действительное значение, на переменную мы никаких ограничений не накладываем.

Раскроем скобки, приведем подобные члены и решим квадратное уравнение:

,

Вернемся к исходной переменной:

,

,

Ответ: ,

Решение логарифмических уравнений остальных типов мы рассмотрим здесь и здесь.


источники:

http://yourrepetitor.ru/kak-reshit-logarifmicheskoe-uravnenie/

http://ege-ok.ru/2012/02/06/reshenie-logarifmicheskih-uravneniy-1