Решение неравенств и уравнений с корнем

Иррациональные неравенства с примерами решения

Неравенства, содержащие переменную под знаком радикала, называются иррациональными неравенствами.

Содержание:

Решение иррациональных неравенств также ищут на множестве действительных чисел и, используя свойства корня и неравенств, сводится к решению системы рациональных неравенств.

Пример: Решите неравенство

Решение: чтобы найти множество решений данного неравенства на множестве допустимых значений, т. е. при условии

Каждое неравенство системы решим методом интервалов и найдем пересечение полученных решений:

Пример: Решите неравенство

Решение: рассмотрим два случая, в зависимости от знака правой части.

1) при для всех неравенство справедливо для всех Значит, надо решить систему

Ее решением является промежуток

2) при обе стороны заданного неравенства можно возвести в квадрат. Тогда получим систему

Ее решением является промежуток

Решением заданного неравенства является

Способы решения иррациональных неравенств

С действием возведения в степень связаны разные виды выражений. Будем рассматривать выражения с переменными, при образовании которых используются действия сложения, вычитания, умножения, деления и возведения в степень, причем возведение в степень хотя бы один раз применено к выражению с переменной.

Если показатель степени целый, то возникает рациональное выражение, если дробный, то — иррациональное выражение, а если иррациональный, то — трансцендентное выражение.

К трансцендентным выражениям приводят и действия нахождения значений синуса, косинуса, тангенса, котангенса, арксинуса, арккосинуса, арктангенса, арккотангенса. Рациональные и иррациональные выражения вместе составляют множество алгебраических выражений.

выражения (1) и (2) являются рациональными, выражения (3) и (4) — иррациональными, выражения (5) и (6) — трансцендентными, а выражения (1)—(4) — алгебраическими.

В зависимости от того, из каких выражений составлено уравнение, говорят о рациональных, иррациональных, трансцендентных уравнениях.

уравнения (1) и (2) являются рациональными, уравнения (3) и (4) — иррациональными, а уравнения (5) и (6) — трансцендентными.

Так же говорят о рациональных, иррациональных, трансцендентных неравенствах.

В этом параграфе рассматривается решение иррациональных уравнений и неравенств. При их решении нужно следить за тем, какие преобразования выполняются при этом.

Утверждение равносильно утверждению , если утверждения и истинны при одних и тех же значениях переменной . Равносильность уравнений означает, что они имеют одни и те же корни, а равносильность неравенств — то, что они имеют одни и те же решения. Равносильность утверждений и обозначают = .

Утверждение следует из утверждения , если утверждение истинно при всех значениях переменной , при которых истинно утверждение . Следование второго уравнения из первого означает, что каждый корень первого уравнения является корнем второго уравнения, но второе уравнение может иметь и дополнительные корни. Так же понимается и следование одного неравенства из другого. Следование утверждения из утверждения обозначают .

Отношения равносильности и следования связаны:

При решении иррациональных неравенств нужно учитывать, что проверка подстановкой найденного множества чисел обычно невозможна из-за его бесконечности. Поэтому при решении неравенств нужно следить за равносильностью проводимых преобразований.

Теорема:

Верны следующие равносильности:

Доказательство проводится по схеме, использованной при доказательстве теоремы 9 с применением соответствующих свойств числовых неравенств.

Пример №1

Решим неравенство . Это неравенство равносильно совокупности неравенств

Первую систему можно заменить равносильной системой , которая равносильна системе , которая, в свою очередь, равносильна неравенству .

Вторая система совокупности равносильна системе , которая равносильна неравенству .

Решения данного неравенства получим, когда объединим решения и первой и второй систем совокупности, в результате получим множество всех действительных чисел.

Ответ. .

Пример №2

Решим неравенство .

Обратим внимание на то, что на области определения левая и правая части данного неравенства обе неотрицательны, поэтому оно равносильно системе неравенств

решение которой следующее:

Ответ. .

Какие неравенства называются иррациональными

В этой лекции мы будем рассматривать неравенства, содержащие переменную (неизвестное) под знаком корня. Такие неравенства называются иррациональными.

При решении иррациональных неравенств часто используют подход, который мы уже применяли, решая иррациональные уравнения. Он состоит в замене исходного неравенства равносильным ему неравенством (системой или совокупностью неравенств).

Пример №3

Решение:

а) Учитывая свойства корня нечетной степени, получаем:

б) По определению корня четной степени значения выражения

неотрицательны при всех значениях при которых это

выражение имеет смысл, т. е. когда значения подкоренного выражения неотрицательны. Таким образом, имеем:

Ответ:

Пример №4

Решение:

а) По определению корня четной степени значения выражения отрицательными быть не могут. Поэтому имеем:

б) Поскольку обе части неравенства неотрицательны при всех значениях при которых его левая часть имеет смысл, то имеем:

Ответ:

При решении иррациональных неравенств часто используется также метод интервалов.

Пример №5

Решить неравенство

Решение:

Обозначим Найдем область определения функции

Таким образом,

Найдем нули функции т. е. корни уравнения

Проверка:

Значит, 0,5 — единственный нуль функции

Отметим нуль функции на области определения (рис.22). Определим знаки значений функции на образовавшихся интервалах, для чего вычислим:

Используя рисунок 22, запишем решение неравенства

Ответ:

Пример №6

Решить неравенство

Решение:

Решение этого примера аналогично решению примера 3.

Используя рисунок 22, записываем решение неравенства

Ответ:

▲ При решении иррациональных неравенств часто используются следующие утверждения о равносильности неравенств и систем неравенств:

Решим пример 3, используя равносильность (1):

Ответ:

Решим пример 4, используя равносильность (2):

Ответ:

Для решения заданий такого типа, как, например, в 1.265, можно использовать следующие утверждения о равносильности:

Аналогичные утверждения можно записать и для неравенств

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Производная в математике
  • Как найти производную функции
  • Асимптоты графика функции
  • Касательная к графику функции и производная
  • Формулы преобразования суммы и разности синусов (косинусов) в произведение
  • Корень n-й степени из числа и его свойства
  • Свойства и график функции y=ⁿ√x (n>1, n∈N)
  • Иррациональные уравнения

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение иррациональных уравнений и неравенств.

Этот математический калькулятор онлайн поможет вам решить иррациональное уравнение или неравенство. Программа для решения иррациональных уравнений и неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> sqrt(x) — квадратный корень x
x^(1/n) — корень степени n

Введите иррациональное уравнение или неравенство
Решить уравнение или неравенство

Немного теории.

Решение иррациональных уравнений и неравенств

1. Иррациональные уравнения

Иррациональными называют уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень. Для таких уравнений ищут, как правило, только действительные корни.

Основной метод решения иррациональных уравнений — метод возведения обеих частей уравнения в одну и ту же степень. При этом следует иметь в виду, что возведение обеих частей уравнения в одну и ту же нечётную степень есть равносильное преобразование уравнения, а в чётную — НЕравносильное. Значит, основные принципиальные трудности связаны с возведением обеих частей уравнения в одну и ту же чётную степень, когда из-за неравносильности преобразования могут появиться посторонние корни, а потому обязательна проверка всех найденных корней.

ПРИМЕР 1.
\( \sqrt[\Large6\normalsize] = \sqrt[\Large6\normalsize] <2x-6>\)

Возведя обе части уравнения в шестую степень, получим:
\( x^2-5x = 2x-6 \Rightarrow \)
\( x^2-7x +6= 0 \Rightarrow \)
\( x_1=1, \; x_2=6 \)
Проверка. «Хорошие» корни можно проверить непосредственной подстановкой в исходное уравнение. При x = 1 заданное уравнение принимает вид \( \sqrt[\Large6\normalsize] <-4>= \sqrt[\Large6\normalsize] <-4>\), во множестве действительных чисел такое «равенство» не имеет смысла. Значит, 1 — посторонний корень, он появился по причине расширения ОДЗ уравнения после возведения в шестую степень. При х = 6 заданное уравнение принимает вид \( \sqrt[\Large6\normalsize] <6>= \sqrt[\Large6\normalsize] <6>\) — это верное равенство.
Итак, уравнение имеет единственный корень: х = 6.
Ответ: х = 6

Введя новую переменную \( u=x^2-x\), получим существенно более простое иррациональное уравнение:
\( \sqrt+\sqrt = \sqrt <2u+21>\).
Возведём обе части уравнения в квадрат:
\( (\sqrt+\sqrt)^2 = (\sqrt<2u+21>)^2 \Rightarrow \)
\( u+2 +2\sqrt\sqrt +u+7 = 2u+21 \Rightarrow \)
\( \sqrt <(u+2)(u+7)>= 6 \Rightarrow \)
\( u^2+9u+14=36 \Rightarrow \)
\( u^2+9u-22=0 \Rightarrow \)
\( u_1=2, \; u_2=-11 \)
Проверка найденных значений их подстановкой в уравнение \( \sqrt+\sqrt = \sqrt <2u+21>\) показывает, что \( u_1=2 \) — корень уравнения, а \( u_2=-11 \) — посторонний корень.
Возвращаясь к исходной переменной x, получаем уравнение \( x^2-x=2 \Rightarrow x^2-x-2=0 \), решив которое находим два корня: \( x_1=2, \; x_2=-1 \)
Ответ: 2; -1.

Уединение корня и возведение обеих частей уравнения в квадрат привело бы к громоздкому уравнению. В то же время, если проявить некоторую наблюдательность, можно заметить, что уравнение легко сводится к квадратному. Действительно, умножим обе его части на 2:
\( 2x^2 +6 -2\sqrt <2x^2-3x+2>= 3x+12 \Rightarrow \)
\( 2x^2 -3x +2 -2\sqrt <2x^2-3x+2>-8 = 0 \Rightarrow \)

Введя новую переменную \( y=\sqrt <2x^2-3x+2>\), получим: \( y^2-2y-8=0 \), откуда \( y_1=4, \; y_2=-2 \). Значит, исходное уравнение равносильно следующей совокупности уравнений:
\( \left[\begin \sqrt <2x^2-3x+2>=4 \\ \sqrt <2x^2-3x+2>= -2 \end\right. \)

Из первого уравнения этой совокупности находим: \( x_1=3<,>5; \; x_2=-2 \). Второе уравнение корней не имеет.

Проверка. Так как совокупность уравнений равносильна исходному уравнению, причём второе уравнение этой совокупности корней не имеет, то найденные корни можно проверить подстановкой в уравнение \( \sqrt <2x^2-3x+2>=4\). Эта подстановка показывает, что оба найденных значения x являются корнями этого уравнения, а значит, и исходного уравнения.
Ответ: 3,5; -2.

Областью определения уравнения является луч \( [5; \; +\infty) \). В этой области выражение \( \sqrt \) можно представить следующим образом: \( \sqrt = \sqrt\sqrt \). Теперь уравнение можно переписать так:
\( x+x -5 +2\sqrt\sqrt +2\sqrt +2\sqrt -48 = 0 \Rightarrow \) \( (\sqrt)^2 +2\sqrt\sqrt +(\sqrt)^2 +2(\sqrt+\sqrt) -48 = 0 \Rightarrow \) \( (\sqrt +\sqrt)^2 +2(\sqrt+\sqrt) -48 = 0 \)

Введя новую переменную \( y= \sqrt +\sqrt \), получим квадратное уравнение \( y^2+2y-48=0 \), из которого находим: \( y_1=6, \; y_2=-8 \). Таким образом, задача свелась к решению совокупности уравнений:
\( \left[\begin \sqrt +\sqrt =6 \\ \sqrt +\sqrt = -8 \end\right. \)
Из первого уравнения совокупности находим \( x= \left( \frac<41> <12>\right)^2 \), второе уравнение совокупности решений явно не имеет.

Проверка. Нетрудно проверить (подстановкой), что \( x= \left( \frac<41> <12>\right)^2 \) — является корнем уравнения \( \sqrt +\sqrt =6 \). Но это уравнение равносильно исходному уравнению, значит, \( x= \left( \frac<41> <12>\right)^2 \) — является корнем и исходного уравнения.
Ответ: \( x= \left( \frac<41> <12>\right)^2 \)

Иногда при решении иррациональных уравнений оказывается удобным ввести две новые переменные.

ПРИМЕР 5.
\( \sqrt[\Large4\normalsize] <1-x>+ \sqrt[\Large4\normalsize] <15+x>=2 \)

Введём новые переменные: \( \left\<\begin u=\sqrt[\Large4\normalsize] <1-x>\\ v=\sqrt[\Large4\normalsize] <15+x>\end\right. \)

Тогда уравнение примет вид \(u+v=2\). Но для нахождения значений двух новых переменных одного уравнения недостаточно. Возведя в четвёртую степень обе части каждого из уравнений системы, получим:
\( \left\<\begin u^4=1-x \\ v^4= 15+x \end\right. \)

Сложим уравнения последней системы: \(u^4 +v^4 =16\). Таким образом, для нахождения u, v мы имеем следующую симметрическую систему уравнений:
\( \left\<\begin u+v=2 \\ u^4 +v^4 =16 \end\right. \)
Решив её, находим: \( \left\<\begin u_1=0 \\ v_1 =2; \end\right. \) \( \left\<\begin u_2=2 \\ v_2 =0 \end\right. \)

Таким образом, исходное уравнение свелось к следующей совокупности систем уравнений: \( \left\<\begin \sqrt[\Large4\normalsize] <1-x>=0 \\ \sqrt[\Large4\normalsize] <15+x>=2; \end\right. \) \( \left\<\begin \sqrt[\Large4\normalsize] <1-x>=2 \\ \sqrt[\Large4\normalsize] <15+x>=0 \end\right. \)

Решив эту совокупность, находим: \(x_1=1, \; x_2=-15 \)

Проверка. Проще всего проверить найденные корни непосредственной подстановкой в заданное уравнение. Проделав это, убеждаемся, что оба значения являются корнями исходного уравнения.
Ответ: 1; -15.

ПРИМЕР 6.
\( \sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>= \sqrt[\Large3\normalsize] <2x-1>\)

Возведём обе части уравнения в куб:
\( 2x+1 + 3\sqrt[\Large3\normalsize] <(2x+1)^2>\cdot \sqrt[\Large3\normalsize] <6x+1>+ 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <(6x+1)^2>+6x+1 = 2x-1 \Rightarrow \) \( 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <6x+1>\cdot (3\sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>) = -6x-3 \)

Воспользовавшись исходным уравнением, заменим сумму \( \sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>\) на выражение \( \sqrt[\Large3\normalsize] <2x-1>\):
\( 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <6x+1>\cdot \sqrt[\Large3\normalsize] <2x-1>= -6x-3 \Rightarrow \)
\( 3\sqrt[\Large3\normalsize] < (2x+1)(6x+1)(2x-1) >= -2x-1 \)
Возведём обе части в куб:
\( (2x+1)(6x+1)(2x-1) = -(2x+1)^3 \Rightarrow \)
\( (2x+1)((6x+1)(2x-1) + (2x+1)^2) =0 \Rightarrow \)
\( 16x^2(2x+1) =0 \Rightarrow \)
\( x_1= -0<,>5; \; x_2=0 \)

Проверка. Подстановкой найденных значений x в исходное уравнение убеждаемся, что его корнем является только x = -0,5.
Ответ: -0,5.

2. Иррациональные неравенства

Рассмотрим иррациональное неравенство вида \( \sqrt 0 \). Осталось лишь заметить, что при одновременном выполнении указанных выше условий обе части заданного иррационального неравенства неотрицательны, а потому их возведение в квадрат представляет собой равносильное преобразование неравенства.

Таким образом, иррациональное неравенство \( \sqrt 0 \\ f(x) 0 \\ x^2-x-12 0 \\ x > -12 \end\right. \)

Получаем: \( x \geqslant 4\)


Ответ: \( x \geqslant 4\)

Рассмотрим теперь неравенство вида \( \sqrt > g(x) \).

Ясно, во-первых, что его решения должны удовлетворять условию \( f(x) \geqslant 0 \).
Во-вторых, замечаем, что при \( g(x) g(x) \) не вызывает сомнений.
В-третьих, замечаем, что если \( g(x) \geqslant 0 \), то можно возвести в квадрат обе части заданного иррационального неравенства.

Таким образом, иррациональное неравенство \( \sqrt > g(x) \) равносильно совокупности систем неравенств:
\( \left\<\begin f(x) \geqslant 0 \\ g(x) (g(x))^2 \end\right. \)

Во второй системе первое неравенство является следствием третьего, его можно не писать.

Данное неравенство равносильно совокупности систем неравенств:
\( \left\<\begin x^2-x-12 \geqslant 0 \\ x 0 \)

Преобразуем неравенство к виду \( x^2+3x-10 +3\sqrt >0 \) и введём новую переменную \( y= \sqrt \). Тогда последнее неравенство примет вид \( y^2+3y-10 >0 \), откуда находим, что либо \(y 2\).

Таким образом, задача сводится к решению совокупности двух неравенств:
\( \left[\begin \sqrt 2 \end\right. \)

Первое неравенство не имеет решений, а из второго находим:
\( x^2+3x >4 \Rightarrow \)
\( (x+4)(x-1) >0 \Rightarrow \)
\( x 1 \)
Ответ: \( x 1 \).

Иррациональные неравенства

Так называются неравенства, содержащие знак корня.

В решении иррациональных неравенств главное – логика и внимательность.

И конечно, надо повторить следующие темы:

Напоминаем, что решение лучше всего записывать в виде цепочки равносильных переходов.

1.Решите неравенство

Правая часть неравенства неотрицательна:
(по определению корня квадратного).

Поскольку левая часть положительна:

Выражение под корнем должно быть неотрицательным. Неравенство равносильно системе:

Как вы думаете – это неравенство такое же, как предыдущее, или отличается от него? Ведь здесь правая часть может быть и положительной, и отрицательной, и равной нулю. И надо рассмотреть все эти случаи.

1) Пусть правая часть неравенства неотрицательна. И левая тоже неотрицательна (по определению арифметического квадратного корня). И подкоренное выражение неотрицательно. Значит, при обе части неравенства можно возвести в квадрат.

Разложим выражение на множители. Корни уравнения – это и .

2) Пусть теперь правая часть неравенства отрицательна. Если то неравенство выполняется. В самом деле, по определению. Значит,

Нам нужно только, чтобы подкоренное выражение было неотрицательно: .

Объединим полученные интервалы и запишем ответ.

3.Решите неравенство

4.Решите неравенство

Ответ:


источники:

http://www.math-solution.ru/math-task/irrational-equality-inequality

http://ege-study.ru/irracionalnye-neravenstva/