Решение невырожденных систем линейных уравнений матричным способом

Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи: А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.

X = x 1 x 2 ⋮ x n — столбец неизвестных,

B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :

A — 1 × A × X = A — 1 × B .

Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .

В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Решаем СЛАУ методом обратной матрицы:

2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X :
  • Находим определитель матрицы А :

d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25

d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :

А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,

А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,

А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,

А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,

А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,

А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,

А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,

А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,

А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :

А * = — 6 7 5 17 1 — 10 — 10 — 5 0

  • Записываем обратную матрицу согласно формуле:

A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,

  • Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:

X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1

Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1

Решение произвольных систем линейных уравнений

Тема 1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. Матрицы. Сложение матриц; умножение матрицы на число; произведение матриц. Обратная матрица.

2. Определители n-го порядка и их свойства. Методы вычисления определителей.

3. Обратная матрица.

5. Решение невырожденных систем линейных уравнений.

6. Теорема Кронекера – Капелли. Решение произвольных линейных систем.

Решение невырожденных систем линейных уравнений

Пусть задана система линейных уравнений

(1.1)

где заданные числа, неизвестные, .

Решением системы (1.1) называется такое множество значений неиз­вестных , при которых каждое уравнение обра­щается в тождество.

Система уравнений, имеющая хотя бы одно решение, называется совместной, а система, не имеющая решений – несовместной.

и

называются матрицей системы и расширенной матрицей системы соответственно.

Рассмотрим случай, когда число уравнений m системы совпадает с числом неизвестных n (m = n). Тогда матрица системы А является квадратной матрицей порядка n.

Система n уравнений с n неизвестными называется невырожденной, если определитель матрицы системы А отличен от нуля ( ).

Невырожденная система имеет единственное решение. Существует два метода решения таких систем.

1. Правило Крамера. Если определитель Δ отличен от нуля, то решение системы находится по формулам

, (1.2)

где определитель, полученный из определителя Δ заменой j–го столбца столбцом свободных членов.

2. Матричный метод. Введем матрицу столбец свободных членов системы и матрицу-столбец неизвестных .

Тогда систему n уравнений с n неизвестными можно записать в виде

. (1.3)

Эта форма записи системы называется матричной.

Матрицей , обратной к матрице А размера , называется такая матрица, для которой справедливо равенство

,

где Е – единичная матрица n-го порядка.

Матрица, определитель которой не равен нулю, называется невырожденной.

Для того чтобы данная матрица имела обратную, необходимо и достаточно, чтобы она была невырожденной.

Рассмотрим уравнение (1.3). Пусть А – невырожденная матрица. Тогда решение системы можно найти по формуле

. (1.4)

Пример 1.1. Проверить невырожденность системы линейных уравне­ний и решить ее: а) по формулам Крамера; б) матричным методом.

Решение. Запишем матрицу системы . Проверим невы­рожденность системы. Для этого вычисляем определитель Δ матрицы А:

.

Так как , то система невырождена. Решаем ее

а) по формулам Крамера.

.

По формулам (1.2) находим решение системы:

Делаем проверку: .

б) матричным методом.

Находим обратную матрицу

,

где союзная матрица, составленная из алгебраических дополнений элементов матрицы А.

, ,

где определитель, полученный из определителя Δ вычеркиванием i-й строки и j-го столбца. Имеем:

,

,

.

.

По формуле (1.4) находим решение:

.

Ответ: .

Решение произвольных систем линейных уравнений

Рассмотрим произвольную систему линейных уравнений (1.1).

Элементарными преобразованиями матрицы называются:

а) перестановка местами любых двух строк;

б) умножение строки на некоторое число ;

в) прибавление к одной строке матрицы любой другой строки, умноженной на некоторое число;

г) удаление нулевой строки.

Решение системы методом ЖорданаГаусса основано на следующем утверждении: элементарные преобразования расширенной матрицы системы не изменяют множества решений системы.

Суть метода заключается в том, чтобы при помощи элементарных преобразований привести расширенную матрицу к наиболее простому виду.

С помощью операции в) можно исключить какое-либо неизвестное из всех уравнений, кроме одного.

Переменная называется базисной в i–м уравнении, если при .

Матрица системы с помощью элементарных преобразований приводит­ся к так называемому базисному виду, если в каждом уравнении системы есть базисная переменная.

Если матрица системы приведена к базисному виду, то переменные, не являющиеся базисными, называются свободными.

Решение системы, полученное после приравнивания нулю всех свободных переменных, называется базисным.

Опишем одну итерацию метода ЖорданаГаусса.

В первой строке расширенной матрицы находим ненулевой элемент . Если таковых нет, то в случае вычеркиваем данную нулевую строку; если , то система несовместна.

Элемент называют ведущим элементом.

Если , то делим первую строку расширенной матрицы на этот элемент . Ко всем строкам, кроме первой, прибавляем первую строку, умноженную на ( ), где i – номер изменяемой строки.

После этой операции коэффициент при в первом уравнении будет равен единице, а во всех остальных уравнениях – нулю. Следовательно, переменная станет базисной.

Описанную итерацию проводим для остальных строк расширенной матрицы, пока не получим m базисных неизвестных ( в каждом уравнении – по одной базисной переменной).

После этого находим общее решение и базисное (приравнивая свободные неизвестные нулю).

Пример 1.2. Решить систему линейных уравнений

методом ЖорданаГаусса. Найти общее и базисное решения.

Решение. Вычисления будем производить в таблице. В исходной части таблицы записываем расширенную матрицу системы.

В первой строке выберем элемент ведущим. Выделим ведущий элемент рамкой. Изменяем вторую, третью и четвертую строки: ко второй строке по элементам прибавляем первую строку, умноженную на (-3), к третьей – первую строку, умноженную на (-1), и к четвертой – первую строку, умноженную на (-3). В результате получим таблицу, в которой переменная стала базисной.

Выбираем элемент ведущим. С помощью элементарных преобразований получаем таблицу, в которой переменная стала базисной.

Выбираем, например, элемент ведущим и делим на него элементы третьей строки. Получаем таблицу

.

Теперь делаем нули в остальных строках четвертого столбца. Получаем таблицу, в которой переменная стала базисной.

Удаляем вторую нулевую строку, получаем таблицу

.

Поскольку каждое уравнение теперь содержит по одной базисной переменной, то оставшаяся небазисная переменная является свободной.

Полагаем . Из последней строки таблицы получаем .

Из второй строки следует , откуда находим или .

Из первой строки следует , откуда получаем или .

Выписываем общее решение: .

Найдем базисное решение. Положим . Тогда имеем .

Сделаем проверку, подставляя найденное решение в исходную систему

Ответ. Общее решение: , базисное решение: .

Задание 1. Проверить невырожденность системы линейных уравне­ний и решить ее: а) по формулам Крамера; б) матричным методом.

1.1. 1.2. 1.3.

1.4. 1.5 1.6.

1.7 1.8. 1.9

1.10. 1.11. 1.12.

1.13. 1.14. 1.15

1.16. 1.17 1.18.

1.19. 1.20. 1.21.

1.22. 1.23. 1.24.

1.25. 1.26. 1.27.

1.28. 1.29. 1.30.

Задание 2. Решить систему линейных уравнений методом Жордана–Гаусса. Найти общее и базисное решения.

2.1. 2.2.

2.3. 2.4.

2.5. 2.6.

2.7. 2.8.

2.9. 2.10.

2.11. 2.12.

2.13. 2.14.

2.15. 2.16.

2.17. 2.18.

2.19. 2.20.

2.21. 2.22.

2.23. 2.24.

2.25. 2.26.

2.27. 2.28.

2.29. 2.30.

Квадратные СЛАУ. Матричный метод решения

С помощью данного метода можно находить решение только для квадратных СЛАУ.

Матричный метод решения

Запишем заданную систему в матричном виде:

Если матрица $$A$$ невырождена, то тогда с помощью операций над матрицами выразим неизвестную матрицу $$X$$ . Операция деления на множестве матриц заменена умножением на обратную матрицу, поэтому домножим последнее равенство на матрицу $A^<-1>$ слева:

$$A^ <-1>A X=A^ <-1>B \Rightarrow E X=A^ <-1>B \Rightarrow$$ $$X=A^ <-1>B$$

Поэтому, чтобы найти неизвестную матрицу $$X$$ надо найти обратную матрицу к матрице системы и умножить ее справа на вектор-столбец свободных коэффициентов.

Данный метод удобно применять тогда, когда нужно решить много одинаковых систем с разными правыми частями.

Примеры решения систем уравнений

Задание. Найти решение СЛАУ $\left\<\begin 5 x_<1>+2 x_<2>=7 \\ 2 x_<1>+x_<2>=9 \end\right.$ матричным методом.

$$X=\left(\begin x_ <1>\\ x_ <2>\end\right)=A^ <-1>B=\left(\begin 1 & -2 \\ -2 & 5 \end\right) \cdot\left(\begin 7 \\ 9 \end\right)=$$ $$=\left(\begin -11 \\ 31 \end\right) \Rightarrow\left(\begin x_ <1>\\ x_ <2>\end\right)=\left(\begin -11 \\ 31 \end\right)$$

Две матрицы одного размера равны, если равны их соответствующие элементы, то есть в итоге имеем, что $x_<1>=-11, x_<2>=31$

Ответ. $x_<1>=-11, x_<2>=31$

Задание. Решить с помощью обратной матрицы систему $\left\<\begin 2 x_<1>+x_<2>+x_<3>=2 \\ x_<1>-x_<2>=-2 \\ 3 x_<1>-x_<2>+2 x_<3>=2 \end\right.$

Решение. Запишем данную систему в матричной форме:

где $A=\left(\begin 2 & 1 & 1 \\ 1 & -1 & 0 \\ 3 & -1 & 2 \end\right)$ — матрица системы, $X=\left(\beginx_ <1>\\ x_ <2>\\ x_<3>\end\right)$ — столбец неизвестных, $X=\left(\begin x_ <1>\\ x_ <2>\\ x_ <3>\end\right)$ — столбец правых частей. Тогда $X=A^ <-1>B$

Найдем обратную матрицу $X=A^<-1>$ к матрице $A$ с помощью союзной матрицы:

Здесь $\Delta=|A|$ — \lt a href=»formules_6_11.php» title=»Методы вычисления определителей матрицы: теоремы и примеры нахождения»>определитель матрицы $A$ ; матрица $\tilde$ — союзная матрица, она получена из исходной матрицы $A$ заменой ее элементов их алгебраическими дополнениями. Найдем $A$ , для этого вычислим алгебраические дополнения к элементам матрицы $A$ :

Определитель матрицы $A$

$$\Delta=\left|\begin 2 & 1 & 1 \\ 1 & -1 & 0 \\ 3 & -1 & 2 \end\right|=2 \cdot(-1) \cdot 2+1 \cdot(-1) \cdot 1+1 \cdot 0 \cdot 3-$$ $$-3 \cdot(-1) \cdot 1-(-1) \cdot 0 \cdot 2-1 \cdot 1 \cdot 2=-4 \neq 0$$


источники:

http://allrefrs.ru/5-46662.html

http://www.webmath.ru/poleznoe/formules_5_3.php