Решение показательных и логарифмических уравнений

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс Урок №44. Показательные и логарифмические уравнения и неравенства.

Перечень вопросов, рассматриваемых в теме

1) показательные уравнения и неравенства;

2) логарифмические уравнения и неравенства;

3) системы уравнений.

Глоссарий по теме

Показательными называются уравнения и неравенства, у которых переменная содержится в показатели степени.

Логарифмические уравнения и неравенства — это уравнения и неравенства, в которых переменная величина находится под знаком логарифма.

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Вы уже умеете решать все виды уравнений и неравенств. Наша задача обобщить изученное, привести знания в систему. Начнем с показательных уравнений.

a х =b. где a>0, a≠1

Если b>0, уравнение имеет один корень: x=loga b. График функции y=a x пересекает прямую y=b в одной точке.

Если b≤0 корней нет. График функции y=a x не пересекает прямую y=b.

При решении неравенств, обращаем внимание на основание. Если а>0, знак неравенства сохраняется. Если а 0, a≠1.

Логарифмическое уравнение logax=b имеет один положительный корень x=a b при любом значении b.

График функции пересекает прямую y=b в одной точке.

Уравнение имеет один положительный корень x=a b при любом b. График функции у= logax пересекает прямую y=b в одной точке.

При решении логарифмических неравенств обращаем внимание на область допустимых значений. Затем с учетом ОДЗ и значения решаем неравенство.

Теперь рассмотрим методы решения. Основных приема два: приведение к одинаковому знаменателю и замена переменной.

1 прием. Как в показательном, так и в логарифмическом уравняем основания. Затем сравним показатели или числа, стоящие под знаком логарифма.

2 прием. Замена переменных.

Находим корни и делаем обратную замену. При решении неравенств применяем те же самые приемы.

При решении логарифмических уравнений, возможно появление посторонних корней. Причина их появления — расширение области определения исходного уравнения. Поэтому проверка корней логарифмического уравнения осуществляется либо по области определения, либо непосредственной подстановкой найденных корней в исходное логарифмическое уравнение.

Примеры и разбор решения заданий тренировочного модуля

Пример 1. Решить уравнение:

При х= -2 выражение lg(x-1) не имеет смысла, т.е. х=-2 посторонний корень. Ответ: х=2.

Пример 2. Найти значение выражения (х+у). x

Найдем область определения: х>0, у>0.

  1. lg(xy)=lg100 ↔ xy=100 ↔ 2xy=200
  2. сложим два уравнения: х 2 +2ху+у 2 =425+200=625 ↔ (х+у) 2 =625

Задача B7 — логарифмические, показательные и иррациональные уравнения

Все задачи B7, которые мне доводилось видеть, были сформулированы примерно одинаково: решить уравнение. При этом сами уравнения относятся к одному из трех видов:

  1. Логарифмические;
  2. Показательные;
  3. Иррациональные.

Вообще говоря, полноценное руководство по каждому типу уравнений займет не один десяток страниц, выходя далеко за рамки ЕГЭ. Поэтому мы рассмотрим лишь самые простые случаи, требующие незатейливых рассуждений и выкладок. Этих знаний будет вполне достаточно, чтобы решить любую задачу B7.

В математике термин «решить уравнение» означает найти множество всех корней данного уравнения, либо доказать, что это множество пусто. Но в бланк ЕГЭ можно вписывать только числа — никаких множеств. Поэтому, если в задании B7 оказалось больше одного корня (или, наоборот, ни одного) — в решении была допущена ошибка.

Логарифмические уравнения

— это любое уравнение, которое сводится к виду log a f ( x ) = k , где a > 0, a ≠ 1 — основание логарифма, f ( x ) — произвольная функция, k — некоторая постоянная.

Такое уравнение решается внесением постоянной k под знак логарифма: k = log a a k . Основание нового логарифма равно основанию исходного. Получим уравнение log a f ( x ) = log a a k , которое решается отбрасыванием логарифма.

Заметим, что по условию a > 0, поэтому f ( x ) = a k > 0, т.е. исходный логарифм существует.

Решение. log7 (8 − x ) = 2 ⇔ log7 (8 − x ) = log7 7 2 ⇔ 8 − x = 49 ⇔ x = −41.

Решение. log0,5 (6 − x ) = −2 ⇔ log0,5 (6 − x ) = log0,5 0,5 −2 ⇔ 6 − x = 4 ⇔ x = 2.

Но что делать, если исходное уравнение окажется сложнее, чем стандартное log a f ( x ) = k ? Тогда сводим его к стандартному, собирая все логарифмы в одной стороне, а числа — в другой.

Если в исходном уравнении присутствует более одного логарифма, придется искать область допустимых значений (ОДЗ) каждой функции, стоящей под логарифмом. Иначе могут появиться лишние корни.

Поскольку в уравнении присутствуют два логарифма, найдем ОДЗ:

  1. x + 1 > 0 ⇔ x > −1
  2. x + 5 > 0 ⇔ x > −5

Получаем, что ОДЗ — это интервал (−1, +∞). Теперь решаем уравнение:

log5 ( x + 1) + log5 ( x + 5) = 1 ⇒ log5 ( x + 1)( x + 5) = 1 ⇔ log5 ( x + 1)( x + 5) = log5 5 1 ⇔ ( x + 1)( x + 5) = 5 ⇔ x 2 + 6 x + 5 = 5 ⇔ x ( x + 6) = 0 ⇔ x 1 = 0, x 2 = −6.

Но x 2 = −6 не подходит по ОДЗ. Остается корень x 1 = 0.

Показательные уравнения

— это любое уравнение, которое сводится к виду a f ( x ) = k , где a > 0, a ≠ 1 — основание степени, f ( x ) — произвольная функция, k — некоторая постоянная.

Это определение почти дословно повторяет определение логарифмического уравнения. Решаются показательные уравнения даже проще, чем логарифмические, ведь здесь не требуется, чтобы функция f ( x ) была положительна.

Для решения сделаем замену k = a t , где t — вообще говоря, логарифм ( t = log a k ), но в ЕГЭ числа a и k будут подобраны так, что найти t будет легко. В полученном уравнении a f ( x ) = a t основания равны, а значит, равны и показатели, т.е. f ( x ) = t . Решение последнего уравнения, как правило, не вызывает проблем.

Задача. Решить уравнение: 7 x − 2 = 49.

Решение. 7 x − 2 = 49 ⇔ 7 x − 2 = 7 2 ⇔ x − 2 = 2 ⇔ x = 4.

Задача. Решить уравнение: 6 16 − x = 1/36.

Решение. 6 16 − x = 1/36 ⇔ 6 16 − x = 6 −2 ⇔ 16 − x = −2 ⇔ x = 18.

Немного о преобразовании показательных уравнений. Если исходное уравнение отличается от a f ( x ) = k , применяем правила работы со степенями:

  1. a n · a m = a n + m ,
  2. a n / a m = a n − m ,
  3. ( a n ) m = a n · m .

Кроме того, надо знать правила замены корней и дробей на степени с рациональным показателем:

Такие уравнения встречаются в ЕГЭ крайне редко, но без них разбор задачи B7 был бы неполным.

Задача. Решить уравнение: (5/7) x − 2 · (7/5) 2 x − 1 = 125/343

  1. (7/5) 2 x − 1 = ((5/7) −1 ) 2 x − 1 = (5/7) 1 − 2 x ,
  2. 125/343 = (5 3) /(7 3 ) = (5/7) 3 .

Имеем: (5/7) x − 2 · (7/5) 2 x − 1 = 125/343 ⇔ (5/7) x − 2 · (5/7) 1 − 2 x = (5/7) 3 ⇔ (5/7) x − 2 + 1 − 2 x = (5/7) 3 ⇔ (5/7) − x − 1 = (5/7) 3 ⇔ − x − 1 = 3 ⇔ x = −4.

Иррациональные уравнения

Под иррациональным понимается любое уравнение, содержащее знак корня. Из всего многообразия иррациональных уравнений мы рассмотрим лишь простейший случай, когда уравнение имеет вид:

Чтобы решить такое уравнение, возведем обе стороны в квадрат. Получим уравнение f ( x ) = a 2 . При этом автоматически выполняется требование ОДЗ: f ( x ) ≥ 0, т.к. a 2 ≥ 0. Остается решить несложное уравнение f ( x ) = a 2 .

Возводим обе стороны в квадрат и получим: 5 x − 6 = 8 2 ⇔ 5 x − 6 = 64 ⇔ 5 x = 70 ⇔ x = 14.

Сначала, как и в прошлый раз, возводим обе стороны в квадрат. А затем внесем знак «минус» в числитель. Имеем:

Заметим, что при x = −4 под корнем будет положительное число, т.е. требование ОДЗ выполнено.

Решение показательных и логарифмических уравнений в классах с углублённым изучениАем математики.
методическая разработка по алгебре (11 класс) по теме

Алгоритм решения показательных и логарифмических уравнений.

Скачать:

ВложениеРазмер
reshenie_pokazatelnykh_i_logarifmicheskikh_uravneniy_2.doc202.5 КБ

Предварительный просмотр:

МОУ «Средняя общеобразовательная школа №22 с УИОП»

Решение показательных и логарифмических уравнений в классах с углубленным изучением математики.

Учитель математики Куликова Н.В.

Решению показательных и логарифмических уравнений в школьном курсе алгебры и начал математического анализа уделяется большое внимание, так как изучение этого вопроса открывает широкие возможности для четкого восприятия свойств функции, а также для повторения некоторых ранее изученных разделов алгебры (решение квадратных уравнений и т.д.)

Показательные уравнения принадлежат к классу уравнений, носящих название трансцендентных уравнений. Для этих уравнений нельзя указать общего способа решения. До окончательного решения трансцендентного уравнения неясно, сколько оно имеет корней. При решении показательных уравнений возможно получение посторонних корней, поэтому в тех случаях, где это необходимо, корни следует проверять подстановкой.

Показательные уравнения можно разбить на три типа, каждый из которых решается определённым способом.

К перовому типу можно отнести уравнения, в которых равные основания даны в неявном виде.

Исходное уравнение свелось к уравнению вида . Данное уравнение равносильно уравнению при условии, что и .

С учетом изложенного уравнение (*) равносильно уравнению

Необходимо сделать проверку, т.к. областью допустимых значений Х является не всё множество действительных чисел.

Можно разделить левую и правую части уравнения на произведение Это сделать можно, так как данное произведение не ровно 0 ни при каких Х.

Исходное уравнение свелось к уравнению . С учётом изложенного выше

Ко второму типу можно отнести уравнения, левая часть которых требует предварительного разложения на множители.

Степени равны, показатели степеней тоже равны при неравных основаниях, значит показатели степеней равны 0, т.е.

К третьему типу можно отнести уравнения, решение которых сводится к решению квадратного уравнения. При этом используется метод введения новой переменной с отбором корней на промежуточном этапе.

Если обозначить , ( по свойству показательных функций), то исходное уравнение сведётся к уравнению

не удовлетворяет условию .

В данном случае необходимости в проверке не существует.

Решение простейших логарифмических уравнений связано с определением логарифма и основным логарифмическим тождеством вида , где .

На основании определения логарифма решаются задачи, в которых по данным основаниям и числу определяется логарифм, по данному логарифму и основанию определятся число и по данному числу и логарифму определятся основание. Решения уравнений вышеприведенного характера обычно затруднений не вызывают. В школьной программе чаще всего встречаются уравнения, которые решаются либо непосредственным потенцированием, либо потенцированием с предварительным упрощением данного выражения, либо логарифмированием обеих частей уравнения.

Желательно, не приступая к решению уравнения, найти область допустимых значений функции, стоящей в левой части уравнения.

При наличии предварительного исследования проверку делать не обязательно. Если же исследование не проводится, то проверка решения необходима.

В данном случае

С учётом проведенного исследования проверка решения не нужна.

С учётом проведенных исследований возможно перейти к решению уравнения

Данное решение удовлетворяет ОДЗ, следовательно является корнем исходного уравнения.

Необходимо прологарифмировать обе части уравнения по основанию 10

Решив данное уравнение относительно , можно получить

С учётом ОДЗ является корнем исходного уравнения.

Логарифмирование обеих частей уравнения используется в основном для уравнений, в которых показатель степени содержит логарифмы.

Несколько примеров решения уравнений с усложнёнными условиями:

Естественно заметить, что , , . Используя определение логарифма, можно перейти к следующим равенствам:

Тогда с учетом новой переменной исходное уравнение примет вид

не удовлетворяет ОДЗ

Решив данное уравнение относительно , можно получить откуда

По теме: методические разработки, презентации и конспекты

Урок — семинар в 11 классе «Решение показательных и логарифмических уравнений с модулем»

Данный урок — семинар рекомендуется для работы в профильном классе, а также материал этого занятия можно использовать на факультативном занятии. Здесь предложен конспект урока, презентация, разадаточн.

Применение нестандартных способов при решении показательных и логарифмических уравнений и неравенств.

Разработка урока по теме «Применение нестандартных способов при решении показательных и логарифмических уравнений .

Урок алгебры в 11 классе с углубленным изучением математики по теме: «Решение показательных и логарифмических уравнений с переменным основанием. Введение сложной экспоненты».

Форма: урок-практикум.Задачи: путем введения сложной экспоненты научить решать показательные и логарифмические уравнения с переменным основанием.Цели урока:Образовательные: -.

Обобщающий урок по теме:»Решение показательных и логарифмических уравнений и неравенств» в 10 — 11 классе

Ребятам нравится практичесое приложение данного материала, спор двух очень сложных для решения и понимания функций (показательной и логарифмической).Решение большого количества различных заданий дает .

Урок алгебры в 11 классе «Решение показательных и логарифмических уравнений»

Презентация предназначена для проведения урока по алгебре (11 класс).Урок адресован:- учителям математики, работающим в выпускных классах, которым нужно не просто закрепить тему, но и подготовит.

Крупноблочное изучение тем : «Показательная логарифмическая функция», «Решение показательных и логарифмических уравнений и неравенств»

Данная методическая разработка поможеть учителю в планировании учебной деятельности.

Повторение 11 класс Решение показательных и логарифмических уравнений и неравенств

Рассматривается материал повторения решения показательных и логарифмических уравнений и неравенств.


источники:

http://www.berdov.com/ege/equation/summary/

http://nsportal.ru/shkola/algebra/library/2014/06/17/reshenie-pokazatelnykh-i-logarifmicheskikh-uravneniy-v-klassakh-s