Решение производных уравнений i с решением

Пошаговый калькулятор производных онлайн

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Примеры по дифференциальным уравнениям в частных производных

Немного теории

Дифференциальным уравнением с частными производными (ДУ с ЧП) называется уравнение относительно неизвестной функции нескольких переменных (ФНП) и ее частных производных. Наивысший порядок частных производных (существенно входящих в уравнение) называется порядком этого уравнения.

ДУ с ЧП называется линейным (ЛДУ с ЧП), если неизвестная функция и ее производные входят в это ДУ линейно (в первой степени).

В этом разделе вы найдете подробно решенные задачи по темам: классификация и приведение к каноническому виду ДУ с ЧП второго порядка с двумя переменными, определение типа уравнения, решение уравнений и систем ДУ в ЧП.

ДУ с ЧП находят широкое применение в прикладных науках: квантовая механика, электродинамика, термодинамика, теория теплои массопереноса и др. при математическом описании и моделировании различных физических процессов. Поэтому такие уравнения изучаются под общим названием уравнений математической физики (примеры решений 16 задач).

Приведение к каноническому виду

Задача 1. Привести к каноническому виду уравнение

Задача 2. Привести уравнение к каноническому виду.

Задача 3. Найти общее решение уравнения, приведя его к каноническому виду:

Решение ДУ в ЧП

Задача 4. Решить уравнение Пфаффа

$$ z^2 dx +zdy +(3zx +2y)dz=0. $$

Задача 5. Решить задачу Коши для уравнения в частных производных

$$ u_-2\Delta u =(x^2+y^2+z^2)t; \quad u(t=0)=xyz, u_t(t=0)=x-y. $$

Задача 6. Найти общее решение уравнения в частных производных

Задача 7. Найти общее решение уравнения в частных производных первого порядка.

$$ xy u_x +(x-2u)u_y = yu. $$

Задача 8. Найти решение задачи Коши для уравнения в частных производных

$$ y u_x -xy u_y=2xu, \quad u(x+y=2)=1/y. $$

Задача 9. Решить систему дифференциальных уравнений в частных производных

Разные задачи на исследование ДУ в ЧП

Задача 10. Найти поверхность, удовлетворяющую данному уравнению и проходящую через данную линию

Задача 11. Найти области гиперболичности, эллиптичности и параболичности уравнения и исследовать их зависимость от $l$, где $l$ – числовой параметр.

Задача 12. Найти функцию, гармоническую внутри круга радиуса $R$ c центром в начале координат и такую, что

Помощь с решением ДУ в ЧП

Если вам нужна помощь с решением задач и контрольных по дифференциальным уравнениям (и другим разделам математического анализа), обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.

Применение производной для решения нелинейных уравнений и неравенств

п.1. Количество корней кубического уравнения

Кубическое уравнение $$ ax^3+bx^2+cx+d=0 $$ на множестве действительных чисел может иметь один, два или три корня.
С помощью производной можно быстро ответить на вопрос, сколько корней имеет данное уравнение. \begin f(x)=ax^3+bx^2+cx+d\\ f'(x)=3ax^2+bx+c \end Если в уравнении \(f'(x)=0\) дискриминант \(D=4b^2-12ac=4(b^2-3ac)\gt 0\), кубическая парабола имеет две точки экстремума: \(x_<1,2>=\frac<-2b\pm\sqrt><6a>\). Если при этом значения функции в точках экстремума \(f(x_1)\cdot f(x_2)\lt 0\), т.е. расположены по разные стороны от оси OX, парабола имеет три точки пересечения с этой осью. Исходное уравнение имеет три корня.
Если две точки экстремума найдены, но \(f(x_1)\cdot f(x_2)=0\), уравнение имеет два корня.
Во всех остальных случаях – у исходного уравнения 1 корень.

Пример 1. Сколько корней имеют уравнения:

1) \(x^3+3x^2-4=0\)
\(b^2-3ac=9\gt 0 (c=0) \)
\(f(x)=x^3+3x^2-4 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=-4,\ f(x_2)=0 \)
\(f(x_1)\cdot f(x_2)=0\Rightarrow\) два корня
2) \(x^3+3x^2-1=0\)
\(b^2-3ac=9\gt 0 \)
\(f(x)=x^3+3x^2-1 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=-1,\ f(x_2)=3 \)
\(f(x_1)\cdot f(x_2)\lt 0\Rightarrow\) три корня
3) \(x^3+3x^2+1=0\)
\(b^2-3ac=9\gt 0\)
\(f(x)=x^3+3x^2+1 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=1,\ f(x_2)=5 \)
\(f(x_1)\cdot f(x_2)\gt 0\Rightarrow\) один корень
4) \(x^3+x^2+x+3=0\)
\(b^2-3ac=1-3\lt 0 \)
Один корень

п.2. Количество корней произвольного уравнения

Задачи на подсчет количества корней решаются с помощью построения графиков при полном или частичном исследовании функций.

Пример 2. а) Найдите число корней уравнения \(\frac 1x+\frac<1>+\frac<1>\)
б) Найдите число корней уравнения \(\frac 1x+\frac<1>+\frac<1>=k\)

Построим график функции слева, а затем найдем для него количество точек пересечения с горизонталью \(y=1\). Это и будет ответом на вопрос задачи (а).
Исследуем функцию: $$ f(x)=\frac1x+\frac<1>+\frac<1> $$ Алгоритм исследования и построения графика – см. §49 данного справочника.
1) ОДЗ: \(x\ne\left\<0;1;3\right\>\)
Все три точки – точки разрыва 2-го рода. \begin \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=-\infty-1-\frac13=-\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=+\infty-1-\frac13=+\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=1-\infty-\frac12=-\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=1+\infty-\frac12=+\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=\frac13+\frac12-\infty=-\infty\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=\frac13+\frac12+\infty=+\infty \end 2) Функция ни четная, ни нечетная.
Функция непериодическая.
3) Асимптоты
1. Вертикальные \(x=0, x=1, x=3\) – точки разрыва 2-го рода
2. Горизонтальные: \begin \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=-0-0-0=-0\\ \lim_\left(\frac1x+\frac<1>+\frac<1>\right)=+0+0+0=+0\\ \end Горизонтальная асимптота \(y=0\)
На минус бесконечности функция стремится к 0 снизу, на плюс бесконечности – сверху.
3. Наклонные: \(k=0\), нет.
4) Первая производная $$ f'(x)=-\frac<1>-\frac<1><(x-1)^2>-\frac<1><(x-3)^2>\lt 0 $$ Производная отрицательная на всей ОДЗ.
Функция убывает.

5) Вторую производную не исследуем, т.к. перегибы не влияют на количество точек пересечения с горизонталью.

6) Точки пересечения с OY – нет, т.к. \(x=0\) – асимптота
Точки пересечения с OX – две, \(0\lt x_1\lt 1,1\lt x_2\lt 3\)

7) График

Получаем ответ для задачи (а) 3 корня.

Решаем более общую задачу (б). Передвигаем горизонталь \(y=k\) снизу вверх и считаем количество точек пересечения с графиком функции. Последовательно, получаем:
При \(k\lt 0\) - три корня
При \(k=0\) - два корня
При \(k\gt 0\) - три корня

Ответ: а) 3 корня; б) при \(k=0\) два корня, при \(k\ne 0\) три корня.

Пример 3. Найдите все значения параметра a, при каждом из которых уравнение $$ \sqrt+\sqrt<10-2x>=a $$ имеет по крайней мере одно решение.

Исследуем функцию \(f(x)=\sqrt+\sqrt<10-2x>\)
ОДЗ: \( \begin x-1\geq 0\\ 10-2x\geq 0 \end \Rightarrow \begin x\geq 1\\ x\leq 5 \end \Rightarrow 1\leq x\leq 5 \)
Функция определена на конечном интервале.
Поэтому используем сокращенный алгоритм для построения графика.
Значения функции на концах интервала: \(f(1)=0+\sqrt<8>=2\sqrt<2>,\ f(5)=\sqrt<4>+0=2\)
Первая производная: \begin f'(x)=\frac<1><2\sqrt>+\frac<-2><2\sqrt<10-2x>>=\frac<1><2\sqrt>-\frac<1><\sqrt<10-2x>>\\ f'(x)=0\ \text<при>\ 2\sqrt=\sqrt<10-2x>\Rightarrow 4(x-1)=10-2x\Rightarrow 6x=14\Rightarrow x=\frac73\\ f\left(\frac73\right)=\sqrt<\frac73-1>+\sqrt<10-2\cdot \frac73>=\sqrt<\frac43>+\sqrt<\frac<16><3>>=\frac<6><\sqrt<3>>=2\sqrt <3>\end Промежутки монотонности:

\(x\)1(1; 7/3)7/3(7/3; 5)5
\(f'(x)\)+0-
\(f(x)\)\(2\sqrt<2>\)\(\nearrow \)max
\(2\sqrt<3>\)
\(\searrow \)2

Можем строить график:

\(y=a\) - горизонтальная прямая.
Количество точек пересечения \(f(x)\) и \(y\) равно количеству решений.
Получаем:

$$ a\lt 2 $$нет решений
$$ 2\leq a\lt 2\sqrt <2>$$1 решение
$$ 2\sqrt<2>\leq a\lt 2\sqrt <3>$$2 решения
$$ a=2\sqrt <3>$$1 решение
$$ a\gt 2\sqrt <3>$$нет решений

По крайней мере одно решение будет в интервале \(2\leq a\leq 2\sqrt<3>\).

п.3. Решение неравенств с построением графиков

Пример 4. Решите неравенство \(\frac<2+\log_3 x>\gt \frac<6><2x-1>\)

Разобьем неравенство на совокупность двух систем.
Если \(x\gt 1\), то \(x-1\gt 0\), на него можно умножить слева и справа и не менять знак.
Если \(x\lt 1\), то \(x-1\lt 0\), умножить также можно, только знак нужно поменять.
Сразу учтем требование ОДЗ для логарифма: \(x\gt 0\)

Получаем совокупность: \begin \left[ \begin \begin x\gt 1\\ 2+\log_3 x\gt\frac<6(x-1)> <2x-1>\end \\ \begin 0\lt x\lt 1\\ 2+\log_3 x\lt\frac<6(x-1)> <2x-1>\end \end \right. \\ 2+\log_3 x\gt \frac<6(x-1)><2x-1>\Rightarrow \log_3 x\gt \frac<6(x-1)-2(2x-1)><2x-1>\Rightarrow \log_3 x\gt \frac<2x-4><2x-1>\\ \left[ \begin \begin x\gt 1\\ \log_3 x\gt\frac<2x-4> <2x-1>\end \\ \begin 0\lt x\lt 1\\ \log_3 x\lt\frac<2x-4> <2x-1>\end \end \right. \end Исследуем функцию \(f(x)=\frac<2x-4><2x-1>=\frac<2x-1-3><2x-1>=1-\frac<3><2x-1>\)
Точка разрыва: \(x=\frac12\) – вертикальная асимптота
Односторонние пределы: \begin \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><-0>=+\infty\\ \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><+0>=-\infty \end Второе слагаемое стремится к 0 на бесконечности, и это дает горизонтальную асимптоту: \(y=1\) \begin \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><-\infty>=1+0\\ \lim_\left(1-\frac<3><2x-1>\right)=1-\frac<3><+\infty>=1-0 \end На минус бесконечности кривая стремится к \(y=1\) сверху, а на плюс бесконечности – снизу.
Первая производная: $$ f'(x)=\left(1-\frac<3><2x-1>\right)'=\frac<3><(2x-1)^2>\gt 0 $$ Производная положительная на всей ОДЗ, функция возрастает.
Вторая производная: $$ f''(x)=-\frac<6> <(2x-1)^3>$$ Одна критическая точка 2-го порядка \(x=\frac12\)


источники:

http://www.matburo.ru/ex_ma.php?p1=maducp

http://reshator.com/sprav/algebra/10-11-klass/primenenie-proizvodnoj-dlya-resheniya-nelinejnyh-uravnenij-i-neravenstv/