Решение рациональных тригонометрических уравнений и систем

Е.П. Нелин, В.А. Лазарев

АЛГЕБРА

и начала математического

анализа

10 класс

учреждений. Базовый и

§ 21. РЕШЕНИЕ СИСТЕМ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Работу выполнила: Мусина В.А. студентка группы 45.3

Системы тригонометрических уравнений решаются с помощью тех же методов, что и алгебраические системы, в частности это исключение неизвестных и замена переменных. Исключить неизвестные можно с помощью одного из двух приемов:из одного уравнения выразить какое-то неизвестное (или функцию от него) и подставить его в другие или преобразовать данные уравнения и потом составить из них комбинации, в которых число неизвестных уменьшается.


Задача 1
. Решите систему уравнений

Из первого уравнения находим и подставляем во второе.

Получаем

Замечание. Если бы для нахождения значения y мы не рассмотрели отдельно формулу (1) со знаком «+» и знаком «–», то вместе с верными решениями получили бы и посторонние решения заданной системы.

Действительно, в таком случае имеем

Тогда, например, при n = 0 получаем

Таким образом, кроме решений, которые вошли в ответ, мы имеем еще две возможности:

Но эти пары значений х и у не являются решениями заданной системы, поскольку они не удовлетворяют первому уравнению.

Поэтому следует запомнить:

Когда решение уравнения cos x = а приходится применять для дальнейших преобразований, то удобно записывать его в виде двух формул: отдельно со знаком «+» и отдельно со знаком «–».

Задача 2 . Решите систему уравнений

Почленно сложим и вычтем эти уравнения. Получим равносильну систему

Представим последнюю систему в виде совокупности двух систем, записывая решения второго уравнения отдельно со знаком «+» и отдельно со знаком «–»:

Почленно складывая и вычитая уравнения этих систем, находим x и y:

Замечание. В запись ответа вошли два параметра n и k, которые независимо друг от друга «пробегают» множество целых чисел. Если попробовать при решении заданной системы воспользоваться только одним параметром, например n, то это приведет к потере решений. Таким образом, в каждом случае, когда система тригонометрических уравнений приводится к системе, состоящей из элементарных тригонометрических уравнений (то есть из уравнений вида sin x = a, cos x = a, tg x = a, ctg x = a), при решении каждого из этих уравнений необходимо использовать свой целочисленный параметр.

Вопросы для контроля

  1. Какие методы используются для решения систем тригонометрических уравнений?
  2. Объясните, в каком случае при формальном решении системы уравнений мы можем потерять часть решений, а в каком случае —получить посторонние решения. Решите эту систему.

Упражнения

Решите систему уравнений (1–8).

Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем

    Опубликовано 16.09.2020Подготовка к ЕГЭ

Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем

На сегодняшний день ЕГЭ по математике проходит в форме решения заданий, содержащихся в контрольно-измерительных материалах, при этом, ответы на задания выносят на отдельный бланк.

Уравнения могут быть следующих видов:

В данной статье рассмотрена профильная математика, а именно раздел по видам и системам рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений.

При решении уравнений нужно помнить основные термины:

— Корнем уравнения называют неизвестное число, которое нужно найти;

— Решение уравнения предполагает нахождение его корня;

— Уравнения, у которых совпадают решения называют равносильными;

— ОДЗ – область допустимых значений;

— Если возможно заменить переменные, то нужно это выполнить;

— После решения уравнения необходимо провести проверку на правильность нахождения корня.

Итак, рассмотрим каждый вид уравнений по отдельности, включая примеры решения.

  1. Рациональные уравнения – уравнения, у которых, как правило, слева расположено рациональное выражение, а справа – ноль.

Рациональным уравнением называют уравнение вида r(х)=0.

Если обе части уравнения являются рациональными выражениями, то рациональные уравнения называют целыми.

Дробно-рациональным называют уравнение, которое содержит дробное выражение.

Порядок действий при решении данного вида уравнения должен быть следующий:

— Все члены должны быть переведены в левую часть уравнения;

— Данную часть уравнения нужно представить в виде дроби p(x)/q(x);

— Для полученного решения нужно провести проверку, то есть.

При решение этого рационального уравнения понадобится формула (а-в)2=а2-2ав+в2.

Рассмотрим ещё один пример решения рационального уравнения:

На основе примеров показано, что рациональные уравнения могут быть с разным количеством переменных.

Иррациональными уравнениями считают уравнения с переменной под корнем. Для того, чтобы определить является ли уравнение иррациональным нужно просто посмотреть на корень переменной. Следует учитывать, что в некоторых учебниках по математике иррациональное уравнение определяют другим способом.

Способы решения таких уравнений:

— Возвести в степень обе части уравнения;

— Ввести новые переменные;

Пример решения уравнения по первому способу:

Пример решения по второму способу:

  1. Показательные уравнения

Показательные уравнения – уравнение, содержащее неизвестный показатель.

В учебниках по математике разных авторов определение показательного уравнения может отличаться. Обычно такие отличия касаются незначительных деталей.

Как правило, это уравнения вида af(x)=ag(x), где а не равно одному и число а больше нуля. Из этого следует, что f(x)=g(x).

— Уравнение с одним основанием;

— Уравнение с равными основаниями.

Существует следующие способы решения таких уравнений:

— Использовать метод логарифмов;

— Привести уравнение к квадратному виду;

— Вынести за скобку общий множитель;

— Ввести новую переменную.

Итак, как решить показательное уравнение? Любое по сложности уравнение нужно привести в простую форму.

Рассмотрим наиболее простой пример решения показательного уравнения:

Для решения данного уравнения следует 2 возвести во вторую степень.

Решение даже простейших показательных уравнений имеет большую значимость. Поэтому далее вам будет легче решать уравнения более сложного уровня.

Данная тема является одной из самых сложных, поэтому следует внимательно подойти к изучению данной темы. Известны три формулы тригонометрических уравнений, запомнить которые не составляет особой сложности.

Наиболее простое тригонометрическое уравнение имеет вид sin x=a, cos x=a, tg x=а, а – число действительное.

Способы решения таких уравнений:

— Решение с помощью форму и приведение к простейшему;

— Ввод других переменных;

— Разложить уравнение по множителям.

Пример решения тригонометрического уравнения:

Здесь нужно рисовать окружность, далее выделить точки с координатой ½, соответственно, это точки 5п/6 и п/6. Если пройти по окружности, исходя из данных точек, то х=п/6+2пk, x=5п/6+2пn. При этом синус и косинус принадлежат промежутку [-1;1]. Если при решении уравнения в его правой части стоит число не принадлежащее промежутку, считается, что уравнение не имеет решения.

Также рассмотрим пример решения уравнения, разложив его по множителям.

Нужно применить формулу sin2x = 2sinxcosx.

2sinxcosx – sinx = 0.

sinx (2cosx – 1) = 0.

Таким образом, если один из множителей равен нулю, то решение уравнения также равно нулю.

Далее, sinx=0, x=пk.

  1. Логарифмические уравнения

Особое значение имеет подготовка ЕГЭ по математике логарифмы, это обусловлено тем, что в КИМах чаще всего встречаются именно этого вида уравнения.

Логарифмическое уравнение – это уравнение с неизвестной величиной, находящейся внутри логарифма.

Примерами логарифмических уравнений являются уравнения следующего вида:

Способы решения уравнений данного вида:

— Применять способ уравнивания к единице;

— Применять способ умножать на единицу;

— Применять доступные правила логарифмов;

— Введение другого основания;

— Возвести в степень.

Самым простым логарифмическим уравнением принято считать уравнение вида log a x = b, при этом основание a>0,a≠1.

Пример решения уравнения:

Сначала следует найти значение области, то есть ОДЗ. При этом нужно помнить, что под логарифмом выражение всегда положительное. Воспользуемся логарифмическим определением, представим х степью основания 2 логарифма, степень будет равна 3.

Решение уравнения является ОДЗ, то есть корень уравнения найден.

Таким образом, подобное задание ЕГЭ по математике легко можно решить, зная логарифмы и способы их решения.

Оставить Комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Выбери тему

Самые популярные записи

  • Наука. Основные особенности научного мышления. Естественные и социально гуманитарные науки (3 293)
  • ЕГЭ по обществознанию: мышление и деятельность; потребности и интересы (2 238)
  • Строение растения. Стебель, лист и цветок. (2 196)
  • Свобода и необходимость в человеческой деятельности. Свобода и ответственность. (2 189)

StudyWay

Помощь

© 2021 StudyWay. Все права защищены.

Ты можешь попробовать 3 наших закрытых занятия из курса «Прорыв».
Записаться можно через Instagram

Для этого напиши в Direct (в личку) кодовое слово «Пробный«

Что за курс и что тебя там будет ждать?

12 мощнейших онлайн занятий по 2 часа в формате вебинаров.
Содержание вебинара: повторение предыдущей темы, теория, перерыв и практика.

Воркбук (рабочая тетрадь)абсолютно к каждому уроку со всей необходимой теорией к этой теме и практикой.

Личный куратор это твой помощник во всех учебных вопросах.
Они занимаются проверкой твоих домашних заданий, поддерживают и мотивируют двигаться дальше, даже когда хочется сдаться.

На собственной онлайн платформе тебя ждут
Домашние задания, которые необходимо решать после каждого занятия.
Все задания построены на базе создателей ЕГЭ — Котова / Лискова.

К каждому тестовому вопросу будет подробный разбор от главного куратора.
А задания, где необходимо оценить ответ (вторая часть) — будет проверять твой личный куратор и писать подробный комментарий про ошибки

Общий чат единомышленников, поделенный на команды.
Название даете совместно (например «Воробушки»)

Ты будешь двигаться сообща с однокурсниками, поддерживая и мотивируя друг друга.
За лучшую командную успеваемость всей команде будут выделены призы в конце каждого месяца (скидка на обучение, стикерпаки и т.д).

Личный помощник — это твой верный друг и помощник, который поможет тебе со всеми техническими вопросами, ответит на вопросы про поступление, да и просто может обсудить какие-то личные вопросы, поделиться переживаниями.

Доступ к уникальной «Академии косатиков».

Там ты сможешь найти:
Банк теории, банк планов, банк аргументов, курсы по работе со всей второй частью, термины, курсы по саморазвитию, полезные лайфхаки и всю подробную информация о ЕГЭ.

Игровая система на нашей платформе StudyWay👇

За выполнение заданий получаешь баллы (XP).

При достижении нового уровня у тебя открываются новые персонажи из Marvel, DC Comics, Игра престолов и Star Wars, а также на каждом новом уровне тебя ждут призы от нашей школы.

Основная ценность курса
1. Изучение теории и практики с учетом изменений в ЕГЭ 2022
2. Заложение фундамента и основы предмета
3. Прохождение всей теории для первой части
4. Нарешивание всех возможных типов заданий
5. Повышение результата с 0 до 60 баллов

Отличия тарифа «Стандарт от «Профи».

Дополнительные домашние задания
необходимо выполнять. Это значительно повысит твою успеваемость и улучшит показатели.

Дополнительное объяснение
твой личный куратор объяснит тебе тему повторно, если останется что-то не понятным

Групповые зачеты
у тебя будут зачеты с твоим личным куратором в мини группах по 5 человек. Там спрашиваются пройденные темы, термины и так далее.

Карта памяти
будешь восполнять все пройденные в удобной интеллект карте и в конце учебы у тебя выйдет файл с полноценной теорией по всем темам и разделам.

Персональный звонок куратору
1 раз в месяц ты можешь позвонить своему куратору и обсудить все волнующие тебя вопросы в течении 20 минут.

Секретный квест
1 раз в месяц ты будешь созваниваться с другим учеником курса и проводить совместные зачеты, тем самым познакомишься с новыми ребятами из других городов, уберешь страхи знакомства, повторишь и закрепишь пройденные темы.

Решение систем тригонометрических уравнений

Системы тригонометрических уравнений бесконечно разнообразны. При их решении используются как общие методы: подстановки, сложения, замены переменной, так и частные, связанные с особенностями преобразований тригонометрических функций.
В этом параграфе мы рассмотрим только некоторые, наиболее характерные, подходы к решению таких систем.

п.1. Системы, в которых одно из уравнений является линейным

Если одно из уравнений системы является линейным, то система решается методом подстановки.

Например:
Решим систему \( \begin x+y=\frac\pi4\\ tgx+tgy=1 \end \)
Из верхнего линейного уравнения выражаем \(y\) через \(x\) и подставляем в нижнее: \begin \begin y=\frac\pi4-x\\ tgx+tg\left(\frac\pi4-x\right)=1 \end \end Решаем полученное уравнение относительно \(x\): \begin tgx+\frac<1+tg\frac\pi4\cdot tgx>=1\Rightarrow \frac<1-tgx><1+tgx>=1-tgx \end ОДЗ: \(tgx\ne -1\) \begin 1-tgx=(1-tgx)(1+tgx)\Rightarrow(1-tgx)(1-1-tgx)=0\\ -tgx(1-tgx)=0\\ \begin \left[ \begin tgx=0\\ tgx=1 \end \right. \\ tgx\ne -1 \end \Rightarrow \left[ \begin tgx=0\\ tgx=1 \end \right. \Rightarrow \left[ \begin x_1=\pi k\\ x_2=\frac\pi4+\pi k \end \right. \end Получаем две пары решений: \begin \left[ \begin \begin x_1=\pi k\\ y_1=\frac\pi4-x=\frac\pi4-\pi k \end \\ \begin x_2=\frac\pi4+\pi k\\ y_2=\frac\pi4-\left(\frac\pi4+\pi k\right)=-\pi k \end \end \right. \end Ответ: \(\left\<\left(\pi k;\ \frac\pi4-\pi k\right),\ \left(\frac\pi4+\pi k;\ -\pi k\right)\right\>\)

п.2. Системы с независимыми уравнениями

Если уравнения системы являются независимыми, то они решаются по отдельности. При этом счетчики периодов обязательно должны быть различными (например, \(k\) и \(n\), для двух независимых уравнений).

Например:
Решим систему \( \begin sin(x-y)=0\\ cox(x+y)=1 \end \)
Уравнения независимы, решаем каждое из них, а затем методом сложения находим \(x\) и \(y\): \begin \begin x-y=\pi k\\ x+y=2\pi n \end \Rightarrow \begin 2x=\pi k+2\pi n\\ 2y=2\pi n-\pi k \end \Rightarrow \begin x=\frac<\pi k><2>+\pi n=\frac\pi2(k+2n)=\frac\pi2(2n+k)\\ y=\pi n-\frac<\pi k><2>=\frac\pi2(2n-k) \end \end Ответ: \(\left(\frac\pi2(2n+k);\ \frac\pi2(2n-k)\right)\)

п.3. Системы с произведениями тригонометрических функций

Системы с произведениями тригонометрических функций и приводимые к ним решаются методом сложения.

Например:
Решим систему \( \begin sinx siny=\frac<\sqrt<3>><4>\\ cosx cosy=\frac<\sqrt<3>> <4>\end \)
Добавим и вычтем уравнения и используем формулы косинуса суммы и разности: \begin \begin cosxcosy+sinxsiny=\frac<\sqrt<3>><2>\\ cosxcosy-sinxsiny=0 \end \Rightarrow \begin cos(x-y)=\frac<\sqrt<3>><2>\\ cos(x+y)=0 \end \end Мы получили систему из двух независимых уравнений. Решаем каждое из них, и затем используем метод сложения, чтобы найти \(x\) и \(y\): \begin \begin x-y=\pm\frac\pi6+2\pi k\\ x+y=\frac\pi2+\pi n \end \Rightarrow \begin 2x=\pm\frac\pi6+\frac\pi2+\pi(2k+n)\\ 2y=\frac\pi2\pm\frac\pi6+\pi(n-2k) \end \Rightarrow \begin x=\pm\frac<\pi><12>+\frac\pi4+\frac\pi2(2k+n)\\ y=\frac\pi4\pm\frac<\pi><12>+\frac\pi2(n-2k) \end \end Получаем две пары решений: \begin \left[ \begin \begin x_1=\frac\pi6+\frac\pi2(2k+n)\\ y_1=\frac\pi3+\frac\pi2(n-2k) \end \\ \begin x_2=\frac\pi3+\frac\pi2(2k+n)\\ y_2=\frac\pi6+\frac\pi2(n-2k) \end \end \right. \end Ответ: \(\left\<\left(\frac\pi6+\frac\pi2(2k+n);\ \frac\pi3+\frac\pi2(n-2k)\right),\ \left(\frac\pi3+\frac\pi2(2k+n);\ \frac\pi6+\frac\pi2(n-2k)\right)\right\>\)

п.4. Замена переменных в системах тригонометрических уравнений

Системы двух уравнений с двумя тригонометрическими функциями легко решаются с помощью замены переменных.

Например:
Решим систему \( \begin tgx-siny=4\\ tg^2x+sin^2y=26 \end \)
Замена переменных: \(a=tgx,\ b=siny\) \begin \begin a-b=4\\ a^2+b^2=26 \end \Rightarrow \begin a=b+4\\ (b+4)^2+b^2=26 \end \Rightarrow \begin a=b+4\\ 2b^2+8b-10=0 \end \Rightarrow\\ \Rightarrow \begin a=b+4\\ b^2+4b-5=0 \end \Rightarrow \begin a=b+4\\ (b+5)(b-1)=0 \end \Rightarrow \left[ \begin \begin a=-1\\ b=-5 \end \\ \begin a=5\\ b=1 \end \end \right. \end Переменная \(b=siny\) ограничена: \(-1\leq b\leq 1\).
\(b=-5\lt-1\) не подходит. Остается вторая пара решений: \(\begin a=5\\ b=1 \end \)
Возвращаемся к исходным переменным: \begin \begin tgx=5\\ siny=1 \end \Rightarrow \begin x=arctg5+\pi k\\ y=\frac\pi2+2\pi n \end \end Ответ: \(\left(arctg5+\pi k;\ \frac\pi2+2\pi n\right)\)

п.5. Примеры

Пример 1. Решите систему уравнений: a) \( \begin x+y=\pi\\ sinx+siny=\sqrt <3>\end \)
Из верхнего линейного уравнения выражаем \(y\) через \(x\) и подставляем в нижнее: \begin \begin y=\pi-x\\ sinx+sin(\pi-x)=\sqrt <3>\end \end Решаем полученное уравнение относительно \(x\): \begin sinx+sinx=\sqrt<3>\Rightarrow 2sinx=\sqrt<3>\Rightarrow sinx=\frac<\sqrt<3>><2>\Rightarrow\\ \Rightarrow x=(-1)^k\frac\pi3+\pi k= \left[ \begin \frac\pi3+2\pi k\\ \frac<2\pi><3>+2\pi k \end \right. \end Получаем две пары решений: \begin \left[ \begin \begin x=\frac\pi3+2\pi k\\ y=\pi-x=\pi-\frac\pi3-2\pi k=\frac<2\pi><3>-2\pi k \end \\ \begin x=\frac<2\pi><3>+2\pi k\\ y=\pi-x=\pi-\frac<2\pi><3>-2\pi k=\frac\pi3-2\pi k \end \end \right. \end Ответ: \(\left\<\left(\frac\pi3+2\pi k;\ \frac<2\pi><3>-2\pi k\right),\ \left(\frac<2\pi><3>+2\pi k;\ \frac\pi3-2\pi k\right)\right\>\)

б) \( \begin sinxcosy=\frac34\\ cosxsiny=\frac14 \end \)
Добавим и вычтем уравнения и используем формулы синуса суммы и разности: \begin \begin sinxcosy+cosxsiny=1\\ sinxcosy-cosxsiny\frac12 \end \Rightarrow \begin sin(x+y)=1\\ sin(x-y)=\frac12 \end \end Мы получили систему из двух независимых уравнений. Решаем каждое из них, и затем используем метод сложения, чтобы найти \(x\) и \(y\): \begin \begin x+y=\frac\pi2+2\pi k\\ x-y=(-1)^n\frac\pi6=\pi n \end \Rightarrow \begin 2x=\frac\pi2+(-1)^n\frac\pi6+\pi(2k+n)\\ 2y=\frac\pi2-(-1)^n\frac\pi6+\pi(2k-n) \end \Rightarrow\\ \Rightarrow \begin x=\frac\pi4+(-1)^n\frac<\pi><12>+\frac\pi2(2k+n)\\ y=\frac\pi4-(-1)^n\frac<\pi><12>+\frac\pi2(2k-n) \end \end Ответ: \(\left(\frac\pi4+(-1)^n\frac<\pi><12>+\frac\pi2(2k+n);\ \frac\pi4-(-1)^n\frac<\pi><12>+\frac\pi2(2k-n)\right)\)

в) \( \begin cos\frac<2>cos\frac<2>=\frac12\\ cosxcosy=\frac14 \end \)
Используем формулу произведения косинусов: $$ cosxcosy=\frac12(cos(x+y)+cos(x-y)) $$ Получаем: \begin cos\frac<2>cos\frac<2>=\frac12\left(cos\left(\frac<2>+\frac<2>\right)+cos\left(\frac<2>-\frac<2>\right)\right)=\\ =\frac12(cosx+cosy)\\ \begin \frac12(cosx+cosy)=\frac12\\ cosxcosy=\frac14 \end \Rightarrow \begin cosx+cosy=1\\ cosxcosy=\frac14 \end \end Замена переменных: \(a=cosx,\ b=cosy\) \begin \begin a+b=1\\ ab=\frac14 \end \Rightarrow \begin a=1-b\\ (1-b)b=\frac14 \end \Rightarrow \begin a=1-b\\ b^2-b+\frac14=0 \end \Rightarrow \begin a=1-b\\ \left(b-\frac12\right)^2=0 \end \Rightarrow \begin a=\frac12\\ b=\frac12 \end \end Возвращаемся к исходным переменным: \begin \begin cosx=\frac12\\ cosy=\frac12 \end \Rightarrow \begin x=\pm\frac\pi3+2\pi k\\ y=\pm\frac\pi3+2\pi n \end \end Получаем четыре пары решений.
Ответ: \( \left\< \begin \left(-\frac\pi3+2\pi k;\ -\frac\pi3+2\pi n\right),\ \left(\frac\pi3+2\pi k;\ \frac\pi3+2\pi n\right),\\ \left(-\frac\pi3+2\pi k;\ \frac\pi3+2\pi n\right),\ \left(\frac\pi3+2\pi k;\ -\frac\pi3+2\pi n\right) \end \right\> \)

г) \( \begin x+y=\frac23\\ 2cos(\pi x)+4cos(\pi y)=3 \end \)
Из верхнего линейного уравнения выражаем \(y\) через \(x\) и подставляем в нижнее: \begin \begin y=\frac23-x\\ 2cos(\pi x)+4cos\left(\pi\left(\frac23-x\right)\right)=3 \end \end Решаем полученное уравнение относительно \(x\): \begin 2cos(\pi x)+4cos\left(\frac<2\pi><3>-\pi x\right)=3\\ 2cos(\pi x)+4\left(cos\frac<2\pi><3>cos\pi x+sin\frac<2\pi><3>sin\pi x\right)=3\\ 2cos(\pi x)+\left(\left(-\frac12\right)cos\pi x+\frac<\sqrt<3>><2>sin\pi x\right)=3\\ 2cos(\pi x)-2cos(\pi x)+2\sqrt<3>sin\pi x=3\\ sin\pi x=\frac<\sqrt<3>><2>\Rightarrow \pi x= \left[ \begin \frac\pi3+2\pi k\\ \frac<2\pi><3>+2\pi k \end \right. \Rightarrow x= \left[ \begin \frac13+2k\\ \frac23+2k \end \right. \end Получаем две пары решений: \begin \left[ \begin \begin x=\frac13+2k\\ y=\frac23-x=\frac13-2k \end \\ \begin x=\frac23+2k\\ y=-2k \end \end \right. \end Ответ: \(\left\<\left(\frac13+2k;\ \frac13-2k\right),\ \left(\frac23+2k;\ -2k\right)\right\>\)

Пример 2*. Решите систему уравнений:
a) \( \begin \sqrtcosx=0\\ 2sin^2x-cos\left(2y-\frac\pi3\right)=0 \end \)
Первое уравнение является независимым. Решаем его, чтобы найти \(x\): \begin \begin \left[ \begin cos2x=0\\ cosx=0 \end \right.\\ cos2x\geq 0 \end \Rightarrow \begin \left[ \begin 2x=\frac\pi2+\pi k\\ x=\frac\pi2+\pi k \end \right.\\ -\frac\pi2+2\pi k\leq 2x\leq\frac\pi2+2\pi k \end \Rightarrow \begin \left[ \begin x=\frac\pi4+\frac<\pi k><2>\\ x=\frac\pi2+\pi k \end \right.\\ -\frac\pi4+\pi k\leq x\leq\frac\pi4+\pi k \end \end

Семейство решений \(x=\frac\pi2+\pi k\) не подходит по требованию ОДЗ (закрашенные сектора).
Остается только: \begin x=\frac\pi4+\frac<\pi k> <2>\end

Подставляем полученный \(x\) во второе уравнение: \begin 2sin^2\left(\frac\pi4+\frac<\pi k><2>\right)-cos\left(2y-\frac\pi3\right)=0 \end Используем формулу понижения степени: \(2sin^2x=1-cos2x\) \begin 2sin^2\left(\frac\pi4+\frac<\pi k><2>\right)=1-cos\left(2\left(\frac\pi4+\frac<\pi k><2>\right)\right)=1-\underbrace_<=0>=1 \end Получаем: \begin 1-cos\left(2y-\frac\pi3\right)=0\Rightarrow cos\left(2y-\frac\pi3\right)=1\Rightarrow 2y-\frac\pi3=2\pi n\Rightarrow\\ \Rightarrow 2y=\frac\pi3+2\pi n\Rightarrow y=\frac\pi6+\pi n \end Ответ: \(\left(\frac\pi4+\frac<\pi k><2>;\ \frac\pi6+\pi n\right)\)

б) \( \begin tg\left(\frac\pi4+x\right)=2\sqrt<2>cos^3y\\ tg\left(\frac\pi4-x\right)=2\sqrt<2>sin^3y \end \)
Рассмотрим произведение: $$ tg\left(\frac\pi4+x\right)\cdot tg\left(\frac\pi4-x\right)=\frac<1+tgx><1-tgx>\cdot \frac<1-tgx><1+tgx>=1 $$ Умножим уравнения и получим: \begin 1=8cos^3ysin^3y=(2cosysiny)^3=sin^32y\Rightarrow sin2y=1\Rightarrow 2y=\frac\pi2+2\pi k\\ y=\frac\pi4+\pi k \end Поставляем полученный y в первое уравнение: $$ tg\left(\frac\pi4+x\right)=2\sqrt<2>cos^3\left(\frac\pi4+\pi k\right) $$ Косинус равен ±1, в зависимости от четверти, в которой находится угол \(y\): \begin cos\left(\frac\pi4+\pi k\right)= \left[ \begin \frac<\sqrt<2>><2>,\ \ y=\frac<\pi><4>+2\pi k\\ -\frac<\sqrt<2>><2>,\ \ y=\frac<5\pi><4>+2\pi k \end \right. \end В первом случае: $$ tg\left(\frac\pi4+x\right)=2\sqrt<2>\cdot\left(\frac<\sqrt<2>><2>\right)^3=1\Rightarrow\frac\pi4+x=\frac\pi4+\pi n\Rightarrow x=\pi n $$ Во втором случае: $$ tg\left(\frac\pi4+x\right)=2\sqrt<2>\cdot\left(-\frac<\sqrt<2>><2>\right)^3=-1\Rightarrow\frac\pi4+x=-\frac\pi4+\pi n\Rightarrow x=-\frac\pi2+\pi n $$ Получаем две пары решений: \begin \left[ \begin \begin x=\pi n\\ y=\frac\pi4+2\pi k \end \\ \begin x=-\frac\pi2+\pi n\\ y=\frac<5\pi><4>+2\pi k \end \end \right. \end Ответ: \(\left\<\left(\pi n;\ \frac\pi4+2\pi k\right),\ \left(-\frac\pi2+\pi n;\ \frac<5\pi><4>+2\pi k\right)\right\>\)

в) \begin \begin \sqrt<1+sinxsiny>=cosx\\ 2sinxctgy+1=0 \end \end ОДЗ: \( \begin 1+sinxsiny\geq 0\\ cosx\geq 0\\ cosy\ne 0 \end \Rightarrow \begin cosx\geq 0\\ cosy\ne 0 \end \)
\(1+sinxsiny\geq 0\) — это требование всегда выполняется.
Возведем первое уравнение в квадрат: \begin 1+sinxsiny=cos^2x\Rightarrow 1-cos^2x+sinxsiny=0\Rightarrow\\ \Rightarrow sin^2x+sinxsiny=0\Rightarrow sinx(sinx+siny)=0\Rightarrow \left[ \begin sinx=0\\ sinx+siny=0 \end \right. \end Из второго уравнения следует, что \(sinx=0\) никогда не является решением \((0+1\ne 0)\). Значит, остается \(sinx+siny=0\) \begin \begin sinx+siny=0\\ 2sinxctgy+1=0 \end \Rightarrow \begin siny=-sinx\\ ctgy=-\frac<1> <2sinx>\end \Rightarrow cosy=siny\cdot ctgy=\frac12\Rightarrow\\ \Rightarrow y=\pm arccos\frac12+2\pi k=\pm\frac\pi3+2\pi k\\ sinx=-siny\Rightarrow \left[ \begin x=y+\pi=\pi\pm\frac\pi3+2\pi n= \left[ \begin \frac<4\pi><3>+2\pi n\\ \frac<2\pi><3>+2\pi n \end \right. \\ x=-y=\pm\frac\pi3+2\pi n \end \right. \end По ОДЗ \(cosx\geq 0\), подходят только нижние корни.
Получаем две пары решений.
Ответ: \(\left\<\left(-\frac\pi3+2\pi n;\ \frac\pi3+2\pi k\right),\ \left(\frac\pi3+2\pi n;\ -\frac\pi3+2\pi k\right)\right\>\)


источники:

http://thestudyway.com/education_ege/logarifmicheskie_trigonometricheskie_sistemy/

http://reshator.com/sprav/algebra/10-11-klass/reshenie-sistem-trigonometricheskih-uravnenij/