Решение систем показательных уравнений способом сложения

Системы показательных уравнений и неравенств

Вы будете перенаправлены на Автор24

Способы решения систем уравнений

Для начала кратко вспомним, какие вообще существуют способы решения систем уравнений.

Существуют четыре основных способа решения систем уравнений:

Способ подстановки: берется любое из данных уравнений и выражается $y$ через $x$, затем $y$ подставляется в уравнение системы, откуда и находится переменная $x.$ После этого мы легко можем вычислить переменную $y.$

Способ сложения: в данном способе необходимо умножать одно или оба уравнения на такие числа, чтобы при сложении вместе обоих одна из переменных «исчезла».

Графический способ: оба уравнения системы изображается на координатной плоскости и находится точка их пересечения.

Способ введения новых переменных: в этом способе мы делаем замену каких-либо выражений для упрощения системы, а потом применяем один из выше указанных способов.

Системы показательных уравнений

Системы уравнений, состоящие из показательных уравнений, называются системой показательных уравнений.

Решение систем показательных уравнений будем рассматривать на примерах.

Решить систему уравнений

Решение.

Будем пользоваться первым способом для решения данной системы. Для начала выразим в первом уравнении $y$ через $x$.

Подставим $y$ во второе уравнение:

Ответ: $(-4,6)$.

Решить систему уравнений

Решение.

Данная система равносильна системе

Применим четвертый метод решения уравнений. Пусть $2^x=u\ (u >0)$, а $3^y=v\ (v >0)$, получим:

Решим полученную систему методом сложения. Сложим уравнения:

Тогда из второго уравнения, получим, что

Возвращаясь к замене, получил новую систему показательных уравнений:

Ответ: $(0,1)$.

Готовые работы на аналогичную тему

Системы показательных неравенств

Cистемы неравенств, состоящие из показательных уравнений, называются системой показательных неравенств.

Решение систем показательных неравенств будем рассматривать на примерах.

Решить систему неравенств

Решение:

Данная система неравенств равносильна системе

Для решения первого неравенства вспомним следующую теорему равносильности показательных неравенств:

Теорема 1. Неравенство $a^ >a^ <\varphi (x)>$, где $a >0,a\ne 1$ равносильна совокупности двух систем

Изобразим оба решения на числовой прямой (рис. 11)

Рисунок 11. Решение примера 3 на числовой прямой

Ответ: $(3,+\infty )$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 22 03 2021

11.3.6. Решение систем показательных уравнений

Что является обязательным при решении системы показательных уравнений? Конечно, преобразование данной системы в систему простейших уравнений.

Решить системы уравнений:

Выразим у через х из (2) -го уравнения системы и подставим это значение в (1) -ое уравнение системы.

Решаем (2) -ое уравнение полученной системы:

2 х +2 x +2 =10, применяем формулу: a x + y =a x a y .

2 x +2 x ∙2 2 =10, вынесем общий множитель 2 х за скобки:

2 х (1+2 2 )=10 или 2 х ∙5=10, отсюда 2 х =2.

2 х =2 1 , отсюда х=1. Возвращаемся к системе уравнений.

Ответ: (1; 2).

Представляем левую и правую части (1) -го уравнения в виде степеней с основанием 2, а правую часть (2) -го уравнения как нулевую степень числа 5.

Если равны две степени с одинаковыми основаниями, то равны и показатели этих степеней — приравниваем показатели степеней с основаниями 2 и показатели степеней с основаниями 5.

Получившуюся систему линейных уравнений с двумя переменными решаем методом сложения.

Находим х=2 и это значение подставляем вместо х во второе уравнение системы.

Находим у.

Ответ: (2; 1,5).

Если в предыдущих двух примерах мы переходили к более простой системе приравнивая показатели двух степеней с одинаковыми основаниями, то в 3-ем примере эта операция невыполнима. Такие системы удобно решать вводом новых переменных. Мы введем переменные u и v, а затем выразим переменную u через v и получим уравнение относительно переменной v.

Решаем (2) -ое уравнение системы.

v 2 +63v-64=0. Подберем корни по теореме Виета, зная, что: v1+v2=-63; v1∙v2=-64.

Получаем: v1=-64, v2=1. Возвращаемся к системе, находим u.

Так как значения показательной функции всегда положительны, то уравнения 4 x = -1 и 4 y = -64 решений не имеют.

Представляем 64 и 1 в виде степеней с основанием 4.

Приравниваем показатели степеней и находим х и у.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Немного теории.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\< \begin 3x+y=7 \\ -5x+2y=3 \end \right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ \left\< \begin y = 7—3x \\ -5x+2(7-3x)=3 \end \right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\< \begin 2x+3y=-5 \\ x-3y=38 \end \right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ \left\< \begin 3x=33 \\ x-3y=38 \end \right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение \( x-3y=38 \) получим уравнение с переменной y: \( 11-3y=38 \). Решим это уравнение:
\( -3y=27 \Rightarrow y=-9 \)

Таким образом мы нашли решение системмы уравнений способом сложения: \( x=11; y=-9 \) или \( (11; -9) \)

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.


источники:

http://mathematics-repetition.com/11-3-6-reshenie-sistem-pokazatelynh-uravneniy/

http://www.math-solution.ru/math-task/sys-lin-eq