Решение систем уравнений 10 класс профильный уровень

Решение систем уравнений
презентация к уроку по алгебре (10 класс)

Презентация к уроку по алгебре и началам анализа в 10 профильном классе, работающим по учебнику Ю.М. Колягина, Тема урока «Решение систем уровнений» Это второй урок по данной теме. В презентации собраны несколько новых методов решения систем уравнений.

Скачать:

ВложениеРазмер
urok_30_sistemy_uravneniy.pptx158.65 КБ

Предварительный просмотр:

Подписи к слайдам:

Решение систем уравнений

По учебнику: стр. 126 Задача 1 Способ разложения на множители

По учебнику: стр. 126 Задача 2 Способ умножения

По учебнику: стр. 126 Задача 3 Способ деления

Разделим каждое слагаемое на х 2 ≠0 Способ деления

нет действительных корней. Ответ:

Способ сложения Умножаем первое уравнение на 3, второе на 2 и складываем уравнения, получаем: Решим это квадратное уравнение относительно х +

решения системы . Ответ: , .

нет действительных корней Рассмотренная система является симметричной относительно х и у (не изменится, если переменные поменять местами), тогда в ответе обязательно должны получиться точки, симметричные относительно прямой у=х . Ответ: .

№ 361(1), 362(1), 367(1), 369(1)

1 вариант № 357(3) № 358(3) № 361(3) Самостоятельная работа: 2 вариант № 357(4) № 358(4) № 361(4)

№ 361(2), № 362(2), № 367(2), № 369(2) Домашнее задание:

По теме: методические разработки, презентации и конспекты

Урок в 9 классе по теме » Решение систем уравнений 2 степени»

Данный урок уместно использовать при подготовке к ГИА.

Решение систем уравнений

Можно использовать на уроках 11 класса по алгебре модульное обучение.

Способы решения систем уравнений

Данная презентация может быть использована на серии уроков при объяснении нового материала по теме «Решение систем уравнений» (алгебра 7 класс). Её можно также использовать при обобщающем повторении п.

Методы решения систем уравнений

Урок по алгебре в 9 классе по теме: «Методы решения систем уравнений» учителя математики Шевченко ТИИспользованные программы:1C Математический конструктор 3.0Диск Алгебра. Электронное сопр.

Методическая разработка урока алгебры в 7 классе «Различные способы решения систем линейных уравнений» способы решения систем уравнений

Урок алгебры в 7 классе направлен на обобщение и систематизацию различных способов решения систем уравнений: метода сравнения, сложения, подстановки, графического метода, метода Крамера, выбора рацион.

Графическое решение неравенств c одной переменной. Графический способ решения систем уравнений.

Алгебра. Повторение. Подготовка к ГИА. 9 класс.

Презентации по теме «Системы двух линейных уравнений», «Метод подстановки для решения систем уравнений», «Метод сложения для решения систем уравнений» .

Презентации проедполагает использование при проведении онлайн урока по теме «Системы двух линейных уравнений», «Метод подстановки для решения систем уравнений», «Метод сложени.

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №14. Алгебраические системы уравнений.

Перечень вопросов, рассматриваемых в теме:

1) определение алгебраической системы уравнений;

2) методы решений алгебраических систем уравнений;

3) симметрические системы уравнений.

Глоссарий по теме

Системами уравнений называют записи, представляющие собой расположенные друг под другом уравнения, объединенные слева фигурной скобкой, которые обозначают множество всех решений уравнений, одновременно являющихся решениями каждого уравнения систем.

Решением системы уравнений с двумя переменными называется пара значений этих переменных, обращающая каждое уравнение системы в верное числовое равенство, другими словами, являющаяся решением каждого уравнения системы.

Систему уравнений называют однородной, если P(x;y), Q(x;y) — однородные многочлены одной и той же степени, а а и b — действительные числа.

Уравнение P(x;y)= а, где, называют симметрическим, если P(х;y) — симметрический многочлен.

Систему двух уравнений с двумя переменными называют симметрической системой, если оба ее уравнения — симметрические.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

К определению системы уравнений будем подбираться постепенно. Сначала лишь скажем, что его удобно дать, указав два момента: во-первых, вид записи, и, во-вторых, вложенный в эту запись смысл. Остановимся на них по очереди, а затем обобщим рассуждения в определение систем уравнений.

Пусть перед нами несколько каких-нибудь уравнений. Для примера возьмем два уравнения 2·x+y=−3 и x=5. Запишем их одно под другим и объединим слева фигурной скобкой:

Записи подобного вида, представляющие собой несколько расположенных в столбик уравнений и объединенных слева фигурной скобкой, являются записями систем уравнений.

Что же означают такие записи? Они задают множество всех таких решений уравнений системы, которые являются решением каждого уравнения.

Не помешает описать это другими словами. Допустим, какие-то решения первого уравнения являются решениями и всех остальных уравнений системы. Так вот запись системы как раз их и обозначает.

А теперь можно сформулировать определение.

Определение. Системами уравнений называют записи, представляющие собой расположенные друг под другом уравнения, объединенные слева фигурной скобкой, которые обозначают множество всех решений уравнений, одновременно являющихся решениями каждого уравнения систем.

Мы будем решать сегодня, в основном, системы уравнений с двумя переменными.

Определение. Решением системы уравнений с двумя переменными называется пара значений этих переменных, обращающая каждое уравнение системы в верное числовое равенство, другими словами, являющаяся решением каждого уравнения системы.

Рассмотрим методы решения систем уравнений.

Методы решения систем уравнений.

Алгоритм решения системы двух уравнений с двумя переменными x,y методом подстановки:
1. Выразить одну переменную через другую из одного уравнения системы (более простого).
2. Подставить полученное выражение вместо этой переменной в другое уравнение системы.
3. Решить полученное уравнение и найти одну из переменных.
4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения в уравнение, полученное на первом шаге и найти вторую переменную.
5. Записать ответ в виде пар значений, например, (x;y), которые были найдены соответственно на третьем и четвёртом шаге.

Решить систему уравнений

1. Выразим x через y из второго (более простого) уравнения системы x=5+y.

2. Подставим полученное выражение вместо x в первое уравнение системы (5+y)⋅y=6

3. Решим полученное уравнение:

4. Подставим поочерёдно каждое из найденных значений y в уравнение x=5+y, тогда получим:

5. Пары чисел (−1;−6) и (6;1) — решения системы.

  1. Метод алгебраического сложения

Алгоритм решения системы двух уравнений с двумя переменными x,y методом сложения:
1. Уравнять модули коэффициентов при одном из неизвестных.
2. Сложить или вычесть уравнения.
3. Решить полученное уравнение с одной переменной.
4. Подставить поочерёдно каждый из найденных на третьем шаге корней уравнения в одно из уравнений исходной системы, найти второе неизвестное.

5. Записать ответ в виде пар значений, например, (x;y), которые были найдены.

  1. Метод введения новых переменных

При решении систем двух уравнений с двумя переменными метод введения новых переменных можно применять двумя способами:

1. вводится одна новая переменная и используется только в одном уравнении системы;

2. вводятся две новые переменные и используются одновременно в обоих уравнениях системы.

Решение: введем новые переменные xy= u, x+y=v.

Тогда систему можно переписать в более простом виде:

Решением системы является две пары чисел.

Первая пара чисел:

Вторая пара чисел:

Однако пара (0;0), являющаяся решением первого уравнения системы, не удовлетворяет второму уравнению, т. к. 0²-3·0·0 + 0² = 0 ≠-1. Отсюда х ≠0, и поэтому можем обе части первого уравнения системы разделить на х² ≠ 0 (это не приведет к потере корней). Разделив обе части первого уравнения системы на х², получим

.

получим t² -1 — 2 = 0 t₁ =2, t₂ =-1.

Таким образом, исходная система равносильна совокупности двух систем уравнений:

Первая из этих систем имеет два решения: х₁ =1, у₁ = 2; х₂ = -1; у₂ = -2.

Вторая система несовместна. Отсюда (1;2), (—1;—2) — решения исходной системы.

Решить систему уравнений

Сложим уравнения почленно.

Решим полученное уравнение с одной переменной.

Подставим поочередно каждый из найденных корней уравнения

в одно из уравнений исходной системы, например во второе, и найдём второе неизвестное.

если х=5, то 25+y 2 =29

если х=-5, то 25+y 2 =29

Пары чисел (−5;−2), (−5;2), (5;−2) и (5;2) — решения системы.

Е.П. Нелин, В.А. Лазарев

АЛГЕБРА

и начала математического

анализа

10 класс

учреждений. Базовый и

§ 21. РЕШЕНИЕ СИСТЕМ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Работу выполнила: Мусина В.А. студентка группы 45.3

Системы тригонометрических уравнений решаются с помощью тех же методов, что и алгебраические системы, в частности это исключение неизвестных и замена переменных. Исключить неизвестные можно с помощью одного из двух приемов:из одного уравнения выразить какое-то неизвестное (или функцию от него) и подставить его в другие или преобразовать данные уравнения и потом составить из них комбинации, в которых число неизвестных уменьшается.


Задача 1
. Решите систему уравнений

Из первого уравнения находим и подставляем во второе.

Получаем

Замечание. Если бы для нахождения значения y мы не рассмотрели отдельно формулу (1) со знаком «+» и знаком «–», то вместе с верными решениями получили бы и посторонние решения заданной системы.

Действительно, в таком случае имеем

Тогда, например, при n = 0 получаем

Таким образом, кроме решений, которые вошли в ответ, мы имеем еще две возможности:

Но эти пары значений х и у не являются решениями заданной системы, поскольку они не удовлетворяют первому уравнению.

Поэтому следует запомнить:

Когда решение уравнения cos x = а приходится применять для дальнейших преобразований, то удобно записывать его в виде двух формул: отдельно со знаком «+» и отдельно со знаком «–».

Задача 2 . Решите систему уравнений

Почленно сложим и вычтем эти уравнения. Получим равносильну систему

Представим последнюю систему в виде совокупности двух систем, записывая решения второго уравнения отдельно со знаком «+» и отдельно со знаком «–»:

Почленно складывая и вычитая уравнения этих систем, находим x и y:

Замечание. В запись ответа вошли два параметра n и k, которые независимо друг от друга «пробегают» множество целых чисел. Если попробовать при решении заданной системы воспользоваться только одним параметром, например n, то это приведет к потере решений. Таким образом, в каждом случае, когда система тригонометрических уравнений приводится к системе, состоящей из элементарных тригонометрических уравнений (то есть из уравнений вида sin x = a, cos x = a, tg x = a, ctg x = a), при решении каждого из этих уравнений необходимо использовать свой целочисленный параметр.

Вопросы для контроля

  1. Какие методы используются для решения систем тригонометрических уравнений?
  2. Объясните, в каком случае при формальном решении системы уравнений мы можем потерять часть решений, а в каком случае —получить посторонние решения. Решите эту систему.

Упражнения

Решите систему уравнений (1–8).


источники:

http://resh.edu.ru/subject/lesson/3812/conspect/

http://ya-znau.ru/znaniya/zn/282