Решение систем уравнений логарифмических показательных иррациональных

Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем

    Опубликовано 16.09.2020Подготовка к ЕГЭ

Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем

На сегодняшний день ЕГЭ по математике проходит в форме решения заданий, содержащихся в контрольно-измерительных материалах, при этом, ответы на задания выносят на отдельный бланк.

Уравнения могут быть следующих видов:

В данной статье рассмотрена профильная математика, а именно раздел по видам и системам рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений.

При решении уравнений нужно помнить основные термины:

— Корнем уравнения называют неизвестное число, которое нужно найти;

— Решение уравнения предполагает нахождение его корня;

— Уравнения, у которых совпадают решения называют равносильными;

— ОДЗ – область допустимых значений;

— Если возможно заменить переменные, то нужно это выполнить;

— После решения уравнения необходимо провести проверку на правильность нахождения корня.

Итак, рассмотрим каждый вид уравнений по отдельности, включая примеры решения.

  1. Рациональные уравнения – уравнения, у которых, как правило, слева расположено рациональное выражение, а справа – ноль.

Рациональным уравнением называют уравнение вида r(х)=0.

Если обе части уравнения являются рациональными выражениями, то рациональные уравнения называют целыми.

Дробно-рациональным называют уравнение, которое содержит дробное выражение.

Порядок действий при решении данного вида уравнения должен быть следующий:

— Все члены должны быть переведены в левую часть уравнения;

— Данную часть уравнения нужно представить в виде дроби p(x)/q(x);

— Для полученного решения нужно провести проверку, то есть.

При решение этого рационального уравнения понадобится формула (а-в)2=а2-2ав+в2.

Рассмотрим ещё один пример решения рационального уравнения:

На основе примеров показано, что рациональные уравнения могут быть с разным количеством переменных.

Иррациональными уравнениями считают уравнения с переменной под корнем. Для того, чтобы определить является ли уравнение иррациональным нужно просто посмотреть на корень переменной. Следует учитывать, что в некоторых учебниках по математике иррациональное уравнение определяют другим способом.

Способы решения таких уравнений:

— Возвести в степень обе части уравнения;

— Ввести новые переменные;

Пример решения уравнения по первому способу:

Пример решения по второму способу:

  1. Показательные уравнения

Показательные уравнения – уравнение, содержащее неизвестный показатель.

В учебниках по математике разных авторов определение показательного уравнения может отличаться. Обычно такие отличия касаются незначительных деталей.

Как правило, это уравнения вида af(x)=ag(x), где а не равно одному и число а больше нуля. Из этого следует, что f(x)=g(x).

— Уравнение с одним основанием;

— Уравнение с равными основаниями.

Существует следующие способы решения таких уравнений:

— Использовать метод логарифмов;

— Привести уравнение к квадратному виду;

— Вынести за скобку общий множитель;

— Ввести новую переменную.

Итак, как решить показательное уравнение? Любое по сложности уравнение нужно привести в простую форму.

Рассмотрим наиболее простой пример решения показательного уравнения:

Для решения данного уравнения следует 2 возвести во вторую степень.

Решение даже простейших показательных уравнений имеет большую значимость. Поэтому далее вам будет легче решать уравнения более сложного уровня.

Данная тема является одной из самых сложных, поэтому следует внимательно подойти к изучению данной темы. Известны три формулы тригонометрических уравнений, запомнить которые не составляет особой сложности.

Наиболее простое тригонометрическое уравнение имеет вид sin x=a, cos x=a, tg x=а, а – число действительное.

Способы решения таких уравнений:

— Решение с помощью форму и приведение к простейшему;

— Ввод других переменных;

— Разложить уравнение по множителям.

Пример решения тригонометрического уравнения:

Здесь нужно рисовать окружность, далее выделить точки с координатой ½, соответственно, это точки 5п/6 и п/6. Если пройти по окружности, исходя из данных точек, то х=п/6+2пk, x=5п/6+2пn. При этом синус и косинус принадлежат промежутку [-1;1]. Если при решении уравнения в его правой части стоит число не принадлежащее промежутку, считается, что уравнение не имеет решения.

Также рассмотрим пример решения уравнения, разложив его по множителям.

Нужно применить формулу sin2x = 2sinxcosx.

2sinxcosx – sinx = 0.

sinx (2cosx – 1) = 0.

Таким образом, если один из множителей равен нулю, то решение уравнения также равно нулю.

Далее, sinx=0, x=пk.

  1. Логарифмические уравнения

Особое значение имеет подготовка ЕГЭ по математике логарифмы, это обусловлено тем, что в КИМах чаще всего встречаются именно этого вида уравнения.

Логарифмическое уравнение – это уравнение с неизвестной величиной, находящейся внутри логарифма.

Примерами логарифмических уравнений являются уравнения следующего вида:

Способы решения уравнений данного вида:

— Применять способ уравнивания к единице;

— Применять способ умножать на единицу;

— Применять доступные правила логарифмов;

— Введение другого основания;

— Возвести в степень.

Самым простым логарифмическим уравнением принято считать уравнение вида log a x = b, при этом основание a>0,a≠1.

Пример решения уравнения:

Сначала следует найти значение области, то есть ОДЗ. При этом нужно помнить, что под логарифмом выражение всегда положительное. Воспользуемся логарифмическим определением, представим х степью основания 2 логарифма, степень будет равна 3.

Решение уравнения является ОДЗ, то есть корень уравнения найден.

Таким образом, подобное задание ЕГЭ по математике легко можно решить, зная логарифмы и способы их решения.

Оставить Комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Выбери тему

Самые популярные записи

  • Наука. Основные особенности научного мышления. Естественные и социально гуманитарные науки (3 435)
  • Строение растения. Стебель, лист и цветок. (2 331)
  • ЕГЭ по обществознанию: мышление и деятельность; потребности и интересы (2 294)
  • Свобода и необходимость в человеческой деятельности. Свобода и ответственность. (2 260)

StudyWay

Помощь

© 2021 StudyWay. Все права защищены.

Ты можешь попробовать 3 наших закрытых занятия из курса «Прорыв».
Записаться можно через Instagram

Для этого напиши в Direct (в личку) кодовое слово «Пробный«

Что за курс и что тебя там будет ждать?

12 мощнейших онлайн занятий по 2 часа в формате вебинаров.
Содержание вебинара: повторение предыдущей темы, теория, перерыв и практика.

Воркбук (рабочая тетрадь)абсолютно к каждому уроку со всей необходимой теорией к этой теме и практикой.

Личный куратор это твой помощник во всех учебных вопросах.
Они занимаются проверкой твоих домашних заданий, поддерживают и мотивируют двигаться дальше, даже когда хочется сдаться.

На собственной онлайн платформе тебя ждут
Домашние задания, которые необходимо решать после каждого занятия.
Все задания построены на базе создателей ЕГЭ — Котова / Лискова.

К каждому тестовому вопросу будет подробный разбор от главного куратора.
А задания, где необходимо оценить ответ (вторая часть) — будет проверять твой личный куратор и писать подробный комментарий про ошибки

Общий чат единомышленников, поделенный на команды.
Название даете совместно (например «Воробушки»)

Ты будешь двигаться сообща с однокурсниками, поддерживая и мотивируя друг друга.
За лучшую командную успеваемость всей команде будут выделены призы в конце каждого месяца (скидка на обучение, стикерпаки и т.д).

Личный помощник — это твой верный друг и помощник, который поможет тебе со всеми техническими вопросами, ответит на вопросы про поступление, да и просто может обсудить какие-то личные вопросы, поделиться переживаниями.

Доступ к уникальной «Академии косатиков».

Там ты сможешь найти:
Банк теории, банк планов, банк аргументов, курсы по работе со всей второй частью, термины, курсы по саморазвитию, полезные лайфхаки и всю подробную информация о ЕГЭ.

Игровая система на нашей платформе StudyWay👇

За выполнение заданий получаешь баллы (XP).

При достижении нового уровня у тебя открываются новые персонажи из Marvel, DC Comics, Игра престолов и Star Wars, а также на каждом новом уровне тебя ждут призы от нашей школы.

Основная ценность курса
1. Изучение теории и практики с учетом изменений в ЕГЭ 2022
2. Заложение фундамента и основы предмета
3. Прохождение всей теории для первой части
4. Нарешивание всех возможных типов заданий
5. Повышение результата с 0 до 60 баллов

Отличия тарифа «Стандарт от «Профи».

Дополнительные домашние задания
необходимо выполнять. Это значительно повысит твою успеваемость и улучшит показатели.

Дополнительное объяснение
твой личный куратор объяснит тебе тему повторно, если останется что-то не понятным

Групповые зачеты
у тебя будут зачеты с твоим личным куратором в мини группах по 5 человек. Там спрашиваются пройденные темы, термины и так далее.

Карта памяти
будешь восполнять все пройденные в удобной интеллект карте и в конце учебы у тебя выйдет файл с полноценной теорией по всем темам и разделам.

Персональный звонок куратору
1 раз в месяц ты можешь позвонить своему куратору и обсудить все волнующие тебя вопросы в течении 20 минут.

Секретный квест
1 раз в месяц ты будешь созваниваться с другим учеником курса и проводить совместные зачеты, тем самым познакомишься с новыми ребятами из других городов, уберешь страхи знакомства, повторишь и закрепишь пройденные темы.

Задача B7 — логарифмические, показательные и иррациональные уравнения

Все задачи B7, которые мне доводилось видеть, были сформулированы примерно одинаково: решить уравнение. При этом сами уравнения относятся к одному из трех видов:

  1. Логарифмические;
  2. Показательные;
  3. Иррациональные.

Вообще говоря, полноценное руководство по каждому типу уравнений займет не один десяток страниц, выходя далеко за рамки ЕГЭ. Поэтому мы рассмотрим лишь самые простые случаи, требующие незатейливых рассуждений и выкладок. Этих знаний будет вполне достаточно, чтобы решить любую задачу B7.

В математике термин «решить уравнение» означает найти множество всех корней данного уравнения, либо доказать, что это множество пусто. Но в бланк ЕГЭ можно вписывать только числа — никаких множеств. Поэтому, если в задании B7 оказалось больше одного корня (или, наоборот, ни одного) — в решении была допущена ошибка.

Логарифмические уравнения

— это любое уравнение, которое сводится к виду log a f ( x ) = k , где a > 0, a ≠ 1 — основание логарифма, f ( x ) — произвольная функция, k — некоторая постоянная.

Такое уравнение решается внесением постоянной k под знак логарифма: k = log a a k . Основание нового логарифма равно основанию исходного. Получим уравнение log a f ( x ) = log a a k , которое решается отбрасыванием логарифма.

Заметим, что по условию a > 0, поэтому f ( x ) = a k > 0, т.е. исходный логарифм существует.

Решение. log7 (8 − x ) = 2 ⇔ log7 (8 − x ) = log7 7 2 ⇔ 8 − x = 49 ⇔ x = −41.

Решение. log0,5 (6 − x ) = −2 ⇔ log0,5 (6 − x ) = log0,5 0,5 −2 ⇔ 6 − x = 4 ⇔ x = 2.

Но что делать, если исходное уравнение окажется сложнее, чем стандартное log a f ( x ) = k ? Тогда сводим его к стандартному, собирая все логарифмы в одной стороне, а числа — в другой.

Если в исходном уравнении присутствует более одного логарифма, придется искать область допустимых значений (ОДЗ) каждой функции, стоящей под логарифмом. Иначе могут появиться лишние корни.

Поскольку в уравнении присутствуют два логарифма, найдем ОДЗ:

  1. x + 1 > 0 ⇔ x > −1
  2. x + 5 > 0 ⇔ x > −5

Получаем, что ОДЗ — это интервал (−1, +∞). Теперь решаем уравнение:

log5 ( x + 1) + log5 ( x + 5) = 1 ⇒ log5 ( x + 1)( x + 5) = 1 ⇔ log5 ( x + 1)( x + 5) = log5 5 1 ⇔ ( x + 1)( x + 5) = 5 ⇔ x 2 + 6 x + 5 = 5 ⇔ x ( x + 6) = 0 ⇔ x 1 = 0, x 2 = −6.

Но x 2 = −6 не подходит по ОДЗ. Остается корень x 1 = 0.

Показательные уравнения

— это любое уравнение, которое сводится к виду a f ( x ) = k , где a > 0, a ≠ 1 — основание степени, f ( x ) — произвольная функция, k — некоторая постоянная.

Это определение почти дословно повторяет определение логарифмического уравнения. Решаются показательные уравнения даже проще, чем логарифмические, ведь здесь не требуется, чтобы функция f ( x ) была положительна.

Для решения сделаем замену k = a t , где t — вообще говоря, логарифм ( t = log a k ), но в ЕГЭ числа a и k будут подобраны так, что найти t будет легко. В полученном уравнении a f ( x ) = a t основания равны, а значит, равны и показатели, т.е. f ( x ) = t . Решение последнего уравнения, как правило, не вызывает проблем.

Задача. Решить уравнение: 7 x − 2 = 49.

Решение. 7 x − 2 = 49 ⇔ 7 x − 2 = 7 2 ⇔ x − 2 = 2 ⇔ x = 4.

Задача. Решить уравнение: 6 16 − x = 1/36.

Решение. 6 16 − x = 1/36 ⇔ 6 16 − x = 6 −2 ⇔ 16 − x = −2 ⇔ x = 18.

Немного о преобразовании показательных уравнений. Если исходное уравнение отличается от a f ( x ) = k , применяем правила работы со степенями:

  1. a n · a m = a n + m ,
  2. a n / a m = a n − m ,
  3. ( a n ) m = a n · m .

Кроме того, надо знать правила замены корней и дробей на степени с рациональным показателем:

Такие уравнения встречаются в ЕГЭ крайне редко, но без них разбор задачи B7 был бы неполным.

Задача. Решить уравнение: (5/7) x − 2 · (7/5) 2 x − 1 = 125/343

  1. (7/5) 2 x − 1 = ((5/7) −1 ) 2 x − 1 = (5/7) 1 − 2 x ,
  2. 125/343 = (5 3) /(7 3 ) = (5/7) 3 .

Имеем: (5/7) x − 2 · (7/5) 2 x − 1 = 125/343 ⇔ (5/7) x − 2 · (5/7) 1 − 2 x = (5/7) 3 ⇔ (5/7) x − 2 + 1 − 2 x = (5/7) 3 ⇔ (5/7) − x − 1 = (5/7) 3 ⇔ − x − 1 = 3 ⇔ x = −4.

Иррациональные уравнения

Под иррациональным понимается любое уравнение, содержащее знак корня. Из всего многообразия иррациональных уравнений мы рассмотрим лишь простейший случай, когда уравнение имеет вид:

Чтобы решить такое уравнение, возведем обе стороны в квадрат. Получим уравнение f ( x ) = a 2 . При этом автоматически выполняется требование ОДЗ: f ( x ) ≥ 0, т.к. a 2 ≥ 0. Остается решить несложное уравнение f ( x ) = a 2 .

Возводим обе стороны в квадрат и получим: 5 x − 6 = 8 2 ⇔ 5 x − 6 = 64 ⇔ 5 x = 70 ⇔ x = 14.

Сначала, как и в прошлый раз, возводим обе стороны в квадрат. А затем внесем знак «минус» в числитель. Имеем:

Заметим, что при x = −4 под корнем будет положительное число, т.е. требование ОДЗ выполнено.

Системы иррациональных, логарифмических и показательных уравнений

, зав. кафедрой математики ДВГГУ

Системы иррациональных, логарифмических и показательных уравнений

Традиционно в контрольные измерительные материалы для проведения единого государственного экзамена по математике включаются задачи позволяющие проверить умения выпускников решать различные системы уравнений. Как правило, это системы из двух уравнений с двумя переменными. Уравнения, входящие в систему могут быть как алгебраическими, в том числе иррациональными, так и трансцендентными. В рамках этой статьи рассмотрим основные методы решения систем с двумя переменными иррациональных, логарифмических и показательных уравнений.

Прежде чем непосредственно переходить к методам решения систем уравнений напомним основные определения и свойства различных функций, которые могут входить в уравнения системы.

Напомним, что два уравнения с двумя неизвестными образуют систему уравнений, если ставится задача о нахождении таких значений переменных, которые являются решениями каждого из уравнений.

Решением системы двух уравнений с двумя неизвестными называется упорядоченная пара чисел, при подстановке которых в систему вместо соответствующих переменных, получаются верные числовые равенства.

Решить систему уравнений – означает найти все ее решения.

Процесс решения системы уравнений, как и процесс решения уравнения, состоит в последовательном переходе с помощью некоторых преобразований от данной системы к более простой. Обычно пользуются преобразованиями, которые приводят к равносильной системе, в этом случае не требуется проверка найденных решений. Если же были использованы неравносильные преобразования, то обязательна проверка найденных решений.

Иррациональными называют уравнения, в которых переменная содержится под знаком корня или под знаком операции возведения в дробную степень.

Следует отметить, что

1. Все корни четной степени, входящие в уравнения, являются арифметическими. Другими словами, если подкоренное выражение отрицательно, то корень лишен смысла; если подкоренное выражение равно нулю, то корень также равен нулю; если подкоренное выражение положительно, то и значение корня положительно.

2. Все корни нечетной степени, входящие в уравнение, определены при любом действительном значении подкоренного выражения. При этом корень отрицателен, если подкоренной выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если подкоренное выражение положительно.

Функции y = и y = являются возрастающими на своей области определения.

При решении систем иррациональных уравнений используются два основных метода: 1) возведение обеих частей уравнений в одну и туже степень; 2) введение новых переменных.

При решении систем иррациональных уравнений первым методом следует помнить, что при возведении обеих частей уравнения, содержащего корни четной степени, в одну и туже степень, получается уравнение, которое является следствием первоначального, в связи с этим, в процессе решения могут появиться посторонние корни. При решении иррациональных уравнений часто используется формула = f(x), применение которой в случае четного n может привести к расширению области определения уравнения. По этим (и по другим) причинам при решении иррациональных уравнений в большинстве случаев необходима проверка найденных решений.

Рассмотрим примеры решения систем иррациональных уравнений различными методами.

Пример 1. Решить систему уравнений

Решение. Чтобы избавиться от иррациональности введем новые переменные. Пусть ……………………… (1),

тогда первоначальная система примет вид: . Решая полученную систему, например методом подстановки находим: . Подставим найденные значения в систему (1), получим: . Возведя обе части первого уравнения в квадрат, второго – в четвертую степень, получим систему: , откуда находим:

Нетрудно убедиться в том, что найденное решение последней системы является решением исходной системы.

Пример 2. Решить систему уравнений

Решение. 1. Из второго уравнения системы имеем: . Подставим в первое уравнение системы вместо правую часть равенства, получим: или ………………………..(2). Введем новую переменную: положим …………………….(3) и подставим в уравнение (2), получим квадратное уравнение от переменной : . Находим корни этого уравнения, например, по теореме Виета: . Корень является посторонним, так как через обозначили арифметический корень. Подставим, в (3), получим . Возведем обе части уравнения в квадрат и выразим : .

Подставим, полученное выражение во второе уравнение первоначальной системы: . Возведем обе части полученного уравнения в квадрат, при этом, чтобы не расширить область допустимых значений полученного уравнения, потребуем, чтобы ………………………………(4).

; .

В силу (4) корень является посторонним.

Найдем значение у при : .

Нетрудно убедиться в том, что пара (0; 4) является решением первоначальной системы уравнений.

Пример 3. Решить систему уравнений:

Решение. 1. Заметим, что правая часть первого уравнения должна быть неотрицательной, т. е. .

2. Возведем обе части первого уравнения в квадрат, получим уравнение: . Тогда система примет вид: . Из первого уравнения системы находим значения . Подставим их во второе уравнение и найдем значения переменной :

.Так как найденные значения не удовлетворяют неравенству , пара (10; 5) не является решением первоначальной системы.

.Эта пара значений удовлетворяет неравенству . Нетрудно убедиться в том, что найденная пара чисел является решением первоначальной системы.

Для успешного решения показательных и логарифмических систем уравнений, вспомним определение и свойства логарифма.

Логарифмом числа b по основанию а, называется показатель степени, в которую нужно возвести число а, чтобы получить число b.

Основные свойства логарифмов:

1) ; 6) ;

2) ; 7) ;

3) ; 8) .

4) = ; 9)

5) = ;

Перечислим основные свойства показательной и логарифмической функций:

1) Область определения функции , где — всё множество действительных чисел; функции , где — множество положительных действительных чисел.

2) Множество значений функции — множество положительных действительных чисел; функции — всё множество действительных чисел.

3) Промежутки монотонности: если обе функции возрастают; если — обе функции убывают.

Замечание. В соответствии со вторым свойством, при решении логарифмических уравнений необходимо либо выяснять область допустимых значений уравнения, либо после решения делать проверку.

Показательным называется трансцендентное уравнение, в котором неизвестное входит в показатель степени некоторых величин. При решении показательных уравнений используются два основных метода:

1) переход от уравнения ……….(1) к уравнению ;

2) введение новых переменных.

Иногда приходится применять искусственные приемы.

Первый метод решения показательных уравнений основан на следующей теореме:

Если , то уравнение равносильно уравнению .

Перечислим основные приемы сведения показательного уравнения к уравнению вида (1).

1. Приведение обеих частей уравнения к одному основанию.

2. Логарифмирование обеих частей уравнения (если они строго положительные) по одинаковому основанию.

Замечание. Логарифмировать можно, вообще говоря, по любому основанию, но обычно логарифмируют по одному из оснований степеней, входящих в уравнение.

3. Разложение левой части уравнения на множители и сведение уравнения к совокупности нескольких уравнений вида (1).

Логарифмическое уравнение – это трансцендентное уравнение, в котором неизвестное входит в аргумент логарифма.

При решении логарифмических уравнений используются два основных метода:

1) переход от уравнения к уравнению вида;

2) введение новых переменных.

Замечание. Так как область определения логарифмической функции только множество положительных действительных чисел, при решении логарифмических уравнений необходимо либо находить область допустимых значений уравнения (ОДЗ), либо после нахождения решений уравнения делать проверку.

Решение простейшего логарифмического уравнения вида

……(1)

основано на следующем важном свойстве логарифмов:

логарифмы двух положительных чисел по одному и тому же положительному отличному от единицы основанию равны тогда и только тогда, когда равны эти числа.

Для уравнения (1) из этого свойства получаем: — единственный корень.

Для уравнения вида …………..(2)

получаем равносильное уравнение .

Пример 4. Найдите значение выражения , если пара является решением системы уравнений .

Решение. 1. Исходя из области определения логарифмической функции получаем требования .

2. Так как уравнения системы содержат логарифмы по двум разным основаниям, перейдем к одному основанию 3: . Воспользовавшись свойствами логарифмов, получим систему: . По определению логарифма имеем: . Из второго уравнения системы получаем значения . Учитывая условие , делаем вывод что — посторонний корень. Из первого уравнения последней системы находим значение при : . Таким образом пара (9; 3) является единственным решением первоначальной системы уравнений.

3. Найдем значение выражения

Пример 5. Найдите наибольшую сумму , если пара является решением системы уравнений .

Решение. Имеем систему показательных уравнений. Особенностью этой системы является то, что неизвестные находятся как в показателе степени, так и в ее основании. Первым шагом при решении таких систем обычно стараются оставить неизвестные только в показателе степени.

В нашем случае это нетрудно сделать, выразив из второго уравнения системы: . Подставим полученное выражение для в первое уравнение системы, получим: . Получили показательное уравнение от одной переменной.

Воспользуемся свойствами степени: . В уравнение входят степени с двумя разными основаниями. Стандартным приемом перехода к одному основанию является деление обеих частей уравнения на одну из степеней с наибольшим показателем. В нашем случае разделим, например, на , получим показательное уравнение: . Стандартным методом решения такого вида показательного уравнения является замена переменной. Пусть (замечаем, что на основании свойств показательной функции, значение новой переменной должно быть положительным), тогда получим уравнение . Находим корни этого уравнения ; . Решаем совокупность двух уравнений: . Получаем: ; .

Из уравнения находим соответствующие значения переменной :

; . Таким образом, пары и являются решениями первоначальной системы.

Найдем суммы вида и выберем из них наибольшую, которая очевидно равна 3.

Рассмотрим несколько примеров «комбинированных» систем уравнений в которые входят уравнения различных видов: иррациональные, логарифмические, показательные.

Пример 6. Решить систему уравнений

Решение. 1. На основании свойств логарифмической функции, имеем ,

2. Преобразуем систему, воспользовавшись свойствами степени и логарифма:

3. Второе логарифмическое уравнение системы содержит одинаковые логарифмы, рациональным методом решения таких уравнений является метод замены переменной. Пусть (1), тогда второе уравнение системы примет вид: . Решим это дробно-рациональное уравнение, учитывая, что . Получим: ; . Воспользуемся равенством (1) и выразим через .

При , , откуда . Подставим это выражение в первое уравнение последней системы: . Решим это уравнение: , так как должен быть положительным, то это посторонний корень; , тогда из равенства , получаем .

При , , откуда . Подставим это выражение в первое уравнение последней системы: . Мы уже нашли, что , следовательно равен нулю может быть только второй сомножитель произведения: . Найдем корни этого уравнения: . Очевидно, что — посторонний корень. Следовательно, еще одним решением системы является пара .

Ответ: ; .

Пример 7. Решить систему .

Решение. 1. Отметим, что система смешанного типа, состоит из логарифмического и иррационального уравнений. Учитывая область определения логарифмической функции, имеем: ; ……………….(1)

Область допустимых значений иррационального уравнения определять не будем, чтобы не тратить время на решение системы неравенств, которая при этом получиться. Но тогда обязательно, когда найдем значения переменных, необходимо сделать проверку.

2. Воспользовавшись свойствами логарифма преобразуем первое уравнение системы:

.

Таким образом, из второго уравнения системы мы выразили одну переменную через другую.

3. Подставим во второе уравнение системы вместо переменной ее выражение через , получим иррациональное уравнение от одной переменной, которое будем решать возведением обеих частей в квадрат:

Найдем корни квадратного уравнения: .

Учитывая, что , найдем значения переменной : .

4. Учитывая (1) делаем вывод, что — постороннее решение. Следовательно, пара чисел (3; 5) не является решением первоначальной системы. Пара чисел (1; 3) удовлетворяет условию (1). Непосредственной проверкой убеждаемся, что эта пара удовлетворяет и второму уравнению системы.

Пример 8. Решить систему

Решение. 1. Рассмотрим второе уравнение системы. Чтобы избавиться от иррациональности, уединим квадратный корень и возведем обе части уравнения в квадрат:

Рассмотрим это уравнение как квадратное, относительно переменной : и найдем его корни: ; .

2. Обе части первого уравнения прологарифмируем по основанию 3, тем самым мы избавимся в уравнении от показательных функций по разным основаниям: .

3. Учитывая найденные выражения для переменной , решим две системы уравнений:

А) и Б) .

А) Подставим выражение для в первое уравнение системы, получим: . Воспользуемся формулой перехода к новому основанию: . Тогда из второго уравнения системы имеем: . Таким образом, пара является решением системы А). Непосредственно проверяем, что эта пара удовлетворяет второму уравнению первоначальной системы.

Б) Подставим выражение для в первое уравнение системы, получим: . Тогда из второго уравнения системы имеем: . Таким образом, пара является решением системы Б). Непосредственно проверяем, что эта пара удовлетворяет второму уравнению первоначальной системы.

Ответ: ;

Задания для самостоятельного решения

1. Решить систему

2. Решить систему

3. Найти , если

4. Решить систему

5. Решить систему

6. Решить систему


источники:

http://www.berdov.com/ege/equation/summary/

http://pandia.ru/text/78/063/98374.php