Решение систем уравнений методом итераций онлайн

Решение СЛАУ методом простой итерации

Назначение сервиса . Онлайн-калькулятор предназначен для решения СЛАУ методом простой итерации в онлайн режиме (см. пример решения). Для проверки решения генерируется шаблон в Excel .

  • Шаг №1
  • Шаг №2
  • Видеоинструкция

Рассмотрим достаточные условия сходимости итерационной последовательности n>.
Практически, для применения метода итерации систему линейных уравнений удобно «погрузить» в одну из трёх следующих метрик:
(3.4)
Для того, чтобы отображение F, заданное в метрическом пространстве соотношениями (3.2), было сжимающим, достаточно выполнение одного из следующих условий:
а) в пространстве с метрикой ρ1: , т. е. максимальная из сумм модулей коэффициентов в правой части системы (3.2), взятых по строкам, должна быть меньше единицы.
б) в пространстве с метрикой ρ2: , т. е. максимальная из сумм модулей коэффициентов в правой части системы (3.2), взятых по столбцам, должна быть меньше единицы.
в) в пространстве с метрикой ρ3: , т. е. сумма квадратов при неизвестных в правой части системы (3.2) должна быть меньше единицы

Пример . Вычислить два приближения методом простой итерации. Оценить погрешность второго приближения. В качестве начального приближения выбрать x 0 =(0; 0; 0).

Так как диагональные элементы системы являются преобладающими, то приведем систему к нормальному виду:

Последовательные приближения будем искать по формулам:

Получаем:
x 1 =(-1.9022; 0.4889; 2.1456), x 2 =(-1.1720; 0.6315; 1.2389).
Для оценки погрешности в метрике ρ1 вычисляем коэффициент μ
.
Вычисляем погрешность:

При большом числе неизвестных схема метода Гаусса, дающая точное решение, становится весьма сложной. В этом случае для решения СЛАУ иногда удобнее пользоваться методом простой итерации.

Метод итераций для системы уравнений в Excel

Для вычисления точности epsilon .
Итерация №1: =ABS(B7)-ABS(B6);=ABS(C7)-ABS(C6);=ABS(D7)-ABS(D6)
Итерация №2: =ABS(B8)-ABS(B7);=ABS(C8)-ABS(C7);=ABS(D8)-ABS(D7)
Скачать шаблон решения.

Метод итераций (метод последовательных приближений)

Отыскание корней функциональных уравнений методом итераций (последовательных приближений).

Метод итераций (метод последовательных приближений) применяется для отыскания корней функциональных уравнений вида

Собственно, сам метод применяется очень просто — выбирается некоторое начальное приближение и строится итерационная последовательность вида

При определенных условиях эта итерационная последовательность сходится к корню уравнения и поэтому ее элементы могут быть взяты за приближенные значения этого корня. Если операция, задаваемая функцией F, удовлетворяет этим условия, то эта операция называется сжатием. Теорию могу порекомендовать посмотреть здесь

Калькулятор ниже просто выполняет итеративное вычисление x по заданной формуле и останавливается, когда достигнута необходимая точность, то есть значения, полученные двумя последовательными итерациями, отличаются на величину, меньшую заданной.

Кстати сказать, в качестве примера взята функция
,
которая на самом деле является итерационной функцией для вычисления квадратного корня числа а, первым алгоритмом для приближенного вычисления квадратного корня, известным из истории. Его еще называют «вавилонским методом», так как его применяли еще в древнем Вавилоне, или «методом Герона», так как греческий математик Герон был первым, кто явно описал этот способ.

Решение систем линейных уравнений

Эта страничка поможет решить Системы Линейных Алгебраических Уравнений (СЛАУ) методом Гаусса, матричным методом или методом Крамера, исследовать их на совместность (теорема Кронекера-Капелли), определить количество решений, найти общее, частное и базисные решения.

Введите коэффициенты при неизвестных в поля. Если Ваше уравнение имеет меньшее количество неизвестных, то оставьте пустыми поля при переменных, не входящих в ваше уравнение. Можно использовать дроби ( 13/31 ).


источники:

http://planetcalc.ru/2824/

http://matrixcalc.org/slu.html