Решение систем уравнений олимпиадные задания

Олимпиадные задания с решениями по математике (9 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Школьный этап олимпиады по математике

для учащихся 9 класса

1.Докажите, что значение выражения + есть число рациональное.

2.На пост мера города претендовало три кандидата: Андреев, Борисов, Васильев. Во время выборов за Васильева было отдано в 1,5 раза больше голосов, чем за Андреева, а за Борисова – в 4 раза больше, чем за Андреева и Васильева вместе. Сколько процентов избирателей проголосовало за победителя? (4балла)

3.В прямоугольном треугольнике с катетами 3 и 4 см проведены высота прямого угла и медиана большего из острых углов. В каком отношении высота делит медиану? (5 баллов)

4.В пруд пустили 30 щук, которые постепенно поедали друг друга. Щука считается сытой, если она съедает трех щук (сытых или голодных). Каково наибольшее количество щук в этом пруду, которые могли бы почувствовать себя сытыми за достаточно большой промежуток времени? (щука может быть в некоторый момент сытой, но потом голодной). (6 баллов)

5.Пусть х и у – такие целые числа, что 3х + 7у делится на 19. Докажите, что
43х + 75у тоже делится на 19. (6 баллов)

1.Докажите, что значение выражения + есть число рациональное.

Решение : + = = — .

2.На пост мера города претендовало три кандидата: Андреев, Борисов, Васильев. Во время выборов за Васильева было отдано в 1,5 раза больше голосов, чем за Андреева, а за Борисова – в 4 раза больше, чем за Андреева и Васильева вместе. Сколько процентов избирателей проголосовало за победителя?

Решение : за Андреева было отдано х голосов; за Васильева было отдано 1,5х голосов; за Борисова было отдано 4 2,5х =10х голосов. Победитель – Борисов. Всего проголосовало х+1,5х +10х =12,5х человек. 12,5х – 100%; 10х – а% ; а =

3.В прямоугольном треугольнике с катетами 3 и 4 см проведены высота прямого угла и медиана большего из острых углов. В каком отношении высота делит медиану?
Ответ: 9:8, считая от основания.
Решение. Проведем отрезок DF, параллельный высоте АЕ. По теореме Фалеса, он разделит отрезок BE пополам. По теореме Пифагора, гипотенуза треугольникаАВС равна 5 см. Кроме этого , и . Отсюда: . Отсюда . То есть ВЕ=3,2, FE=1,6, EC=1,8. Из параллельности отрезков DF и GE следует, что .
4. В пруд пустили 30 щук, которые постепенно поедали друг друга. Щука считается сытой, если она съедает трех щук (сытых или голодных). Каково наибольшее количество щук в этом пруду, которые могли бы почувствовать себя сытыми за достаточно большой промежуток времени?( щука может быть в некоторый момент сытой, но потом съеденной)
Ответ. 9 щук.
Решение. 10 сытых щук быть не может, так как каждая из них съест хотя бы по три щуки и еще последняя останется живой. То есть щук было хотя бы 31. Пример на 9 щук строится просто: первая съела три других, следующая съела ее и две других, и т. д.

5. Пусть х и у – такие целые числа, что 3х+7у делится на 19. Докажите, что 43х+75y тоже делится на 19.
Доказательство. Попробуем представить Отсюда:

Отсюда ,

1. Докажите, что , если .

Доказательство. Первое решение. Если , то условие имеет вид , что не верно. Следовательно, если и требуемое неравенство выполняется. Пусть . Рассмотрим квадратичную функцию . Поскольку , и, по условию, , то в точках +1 и -1 функция принимает значения разного знака и отлична от нуля. Это означает, что квадратичная функция имеет два корня, необходимым и достаточным условием которого является положительность дискриминанта, то есть , откуда и следует требуемое неравенство.

Второе решение . Из условия имеем

. Или . Согласно неравенству о среднем арифметическом и среднем геометрическом , откуда .

2. В десятичной записи некоторого натурального числа переставили цифры и получили число в три раза меньшее. Доказать, что исходное число делится на 27.

Доказательство. Пусть a – исходное число, а число b получено из a после перестановки некоторых цифр. По условию , то есть число a делится на 3. Так как сумма цифр у чисел a и b одинакова, то, по признаку делимости на 3, число b тоже делится на 3. Далее, раз число b делится на 3, а число a = 3 b , то a делится на 9. Теперь согласно признаку делимости на 9, число b тоже делится на 9, а значит, число a делится на 27.

Примечание. Доказано, что число a делится на 9, – 3 балла.

3. В окружность радиуса 1 вписан правильный 2012-угольник. Найти сумму квадратов расстояний от произвольной точки окружности до всех вершин этого многоугольника.

Решение. Так как число вершин правильного 2012-угольника четно, то они разбиваются на 1006 пар диаметрально противоположных вершин. Пусть AB некоторый диаметр, а M – произвольная точка окружности. Если M совпадает с одной из вершин A или B , то . Если точка M отлична и от A и от B , то треугольник MAB прямоугольный (угол AMB – вписанный и опирается на диаметр) с гипотенузой AB = 2. Тогда, по теореме Пифагора, . Следовательно, независимо от выбора точки M , сумма квадратов расстояний от нее до вершин каждой пары диаметрально противоположных вершин постоянна и равна 4. Следовательно, сумма квадратов расстояний от точки M до вершин правильного 2012-угольника будет равна .

Примечание. Если не рассмотрен случай совпадения точки с вершиной многоугольника – минус 1 балл.

4. Сумма первых n членов арифметической прогрессии равна сумме первых m членов той же прогрессии. Определите сумму первых членов этой же прогрессии.

Решение. Обозначим через — первый член прогрессии, а d – разность прогрессии. По условию задачи , то есть справедливо равенство , из которого, учитывая, что , получаем . Подставляя полученное выражение для в формулу суммы первых членов той же прогрессии, получим .

Примечание. Верный ответ без обоснования – 1 балл.

5. В шахматном однокруговом турнире, где каждый участник играет с каждым другим один раз, участвовало два девятиклассника и некоторое число десятиклассников. Два девятиклассника вместе набрали 8 очков, а каждый десятиклассник набрал одно и то же число очков. Сколько десятиклассников участвовало в турнире? (За победу в шахматной партии дается одно очко, за ничью – пол очка, за поражение – ноль очков).

Решение . Пусть в турнире участвовало n десятиклассников. Так как в каждой партии всего разыгрывается одно очко, то девятиклассники в игре между собой вместе набрали 1 очко, и, следовательно, 7 очков набрали в играх с десятиклассниками. Тогда все десятиклассники суммарно набрали очков в играх между собой и 2 n 7 очков в играх с двумя девятиклассниками. По условию, все десятиклассники набрали одинаковое число очков, то есть, число кратно n . Последнее означает, что число целое. Если n нечетно, то ( n 1) – четно, и, следовательно, n делит 7, то есть n = 1 или n = 7. Значение n = 1 не подходит, так как общее число набранных очков десятиклассниками будет отрицательно. Пусть n четно, то есть n = 2к. Тогда = . Следовательно, целое, а значит , откуда k = 1 или k = 7. Действительно, при k > 7 , а значения k проверяются непосредственно. Значение k = 1 не подходит по тем же причинам, что и в первом случае. Таким образом, для n имеем два значения: 7 и 14. Проверкой легко убедиться, что оба значения подходят.

Примечание. Получен один ответ – 5 баллов.

5.Треугольник АВС, сумма частей окружности = 2+5+17=24

1 часть = 360/24 = 15, дуга АВ = 2 х 15 =30, дуга ВС = 5 х 15 = 75. дуга АС=17 х 15 =255

угол С =1/2 дуги АВ =30/2=15, угол А=1/2дугиВС = 75/2=37,5, угол В=1/2 дуги АС= 255/2= 127,5

АВ = R x 2 x sin15 = 0,5176R

BC = R x 2 x sin37,5 =1,2176R

AC = R x 2 x sin 127,5 =1,5866 R

Площадь = 1/2АС х ВС х sin15 = 1/2 х 1,5866R x 1,2176R x 0,2588 = 0,25R в квадрате

1. Так как , то графиком функции будет синусоида с выколотыми точками .

2. Воспользуемся формулами для синуса двойного угла:

,тогда получим уравнение Далее используем формулу синуса суммы для sin 12 x = sin (8 x +4 x ) и получаем, что sin 8 x cos 4 x =0, откуда sin 8 x =0 или cos 4 x =0. Решением совокупности этих уравнений будет . В итоге получим .

3. Выделим полный квадрат: . Но первое слагаемое при любых значениях х неотрицательно, а второе слагаемое строго больше нуля, поскольку дискриминант отрицательный, следовательно, данное выражение всегда положительно. Значит, данное неравенство решений не имеет.

4. Сложив все три уравнения системы, получим уравнение (2 x +2 y +2 z )( x + y + z )=288,из которого найдем х+ y + z =-12. Получим в первом случае х=2, y =4, z =6; а во втором случае х=-2, y =-4, z =-6.

5.Треугольник АВС, сумма частей окружности = 2+5+17=24

1 часть = 360/24 = 15, дуга АВ = 2 х 15 =30, дуга ВС = 5 х 15 = 75. дуга АС=17 х 15 =255

угол С =1/2 дуги АВ =30/2=15, угол А=1/2 дугиВС = 75/2=37,5, угол В=1/2 дуги АС= 255/2= 127,5

АВ = R x 2 x sin15 = 0,5176R

BC = R x 2 x sin37,5 =1,2176R

AC = R x 2 x sin127,5 =1,5866R

Площадь = 1/2АС х ВС х sin15 = 1/2 х 1,5866R x 1,2176R x 0,2588 = 0,25R в квадрате

Решение систем уравнений олимпиадные задания

Служба поддержки (только для пользователей с подтвержденным адресом электронной почты) работает ежедневно с \(10\) до \(18\) часов по Московскому времени (кроме выходных и праздничных дней).

В нерабочее время, выходные и праздничные дни поддержка пользователей также осуществляется, но сроки рассмотрения заявок и ответы на них могут значительно увеличиться.

В данном разделе Вы можете самостоятельно получить информацию по наиболее часто задаваемым вопросам.

Олимпиадные задания. Решение уравнений в целых числах
методическая разработка по алгебре (9, 10, 11 класс) на тему

В данной работе представлены различные способы решения уравнений в целых числах. Работа может быть использована при подготовке к олимпиадам, на кружковых и факультативных занятиях.

Скачать:

ВложениеРазмер
aksanova_ii._olimpiadnye_zadaniya.reshenie_uravneniy_v_tselyh_chislah.docx100.62 КБ

Предварительный просмотр:

МБОУ «Высокогорская средняя общеобразовательная школа №2

Высокогорского муниципального района Республики Татарстан»

Решение уравнений в целых числах

Аксанова Ильсияр Исмагиловна

Учитель математики высшей категории

С. Высокая Гора – 2015 г.

Работа посвящена решению уравнений в целых числах. Актуальность этой темы обусловлена тем, что задачи, основанные на решении уравнений в целых числах, часто встречаются на вступительных экзаменах в высшие учебные заведения и на олимпиадах по математике и на ЕГЭ в старших классах. В школьной программе эта тема рассматривается в ознакомительном порядке. В работе представлены различные способы решения уравнений в целых числах, разобраны конкретные примеры. Данная работа будет полезна учителям старших классов для подготовки к ЕГЭ и олимпиадам.

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми , в честь древнегреческого математика Диофанта Аксандрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

не имеет ненулевых рациональных решений для всех натуральных n > 2.

При решении уравнений в целых и натуральных числах можно условно выделить следующие способы решения:

  • способ перебора вариантов;
  • применение алгоритма Евклида;
  • применение цепных дробей;
  • разложения на множители;
  • решение уравнений в целых числах как квадратных относительно какой-либо переменной;
  • метод остатков;
  • метод бесконечного спуска;
  • оценка выражений, входящих в уравнение.

В работе представлены два приложения: п риложение 1. Таблица остатков при делении степеней ( a n : m ); приложение 2. Задачи для самостоятельного решения

1. Способ перебора вариантов.

Пример 1.1. Найти множество всех пар натуральных чисел, которые являются решениями уравнения 49 х + 51 у = 602.

Решение. Выразим из уравнения переменную х через у х = , так как х и у – натуральные числа, то

х = 602 — 51 у ≥ 49, 51 у ≤553, 1≤ у ≤10 .

Полный перебор вариантов показывает, что натуральными решениями уравнения являются х =5, у =7.

2. Применение алгоритма Евклида. Теорема.

Дано уравнение ax+by=c , где a, b, c -целые числа, a и b не равны 0.

Теорема: Если c не делится нацело на НОД( a,b ), то уравнение не разрешимо в целых числах. Если НОД( a,b )=1или c делится на НОД( a,b ), то уравнение разрешимо в целых числах. Если (x 0 , y 0 )- какое-нибудь решение уравнения, то все решения уравнения задаются формулами:

y=y 0 +at , где t — принадлежит множеству целых чисел.

Пример 2.1. Решить уравнение в целых числах 5 х + 7 у = 19

Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

Тогда 5 x 0 + 7 y 0 = 19, откуда

5( х – x 0 ) + 7( у – y 0 ) = 0,

5( х – x 0 ) = –7( у – y 0 ).

Поскольку числа 5 и 7 взаимно простые, то

х – x 0 = 7 k , у – y 0 = –5 k.

Значит, общее решение:

х = 1 + 7 k , у = 2 – 5 k ,

где k – произвольное целое число.

Ответ: (1+7 k ; 2–5 k ), где k – целое число.

Пример 2.2. Решить уравнение 201 х – 1999 у = 12.

Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201 х – 1999 у = 1. Тогда пара чисел

x 0 = 1273·12 = 15276, y 0 = 128·12 = 1536

является решением уравнения 201 х – 1999 у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999 k , у = 1536 + 201 k , где k – целое число,

или, используя, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201, имеем

х = 1283 + 1999 n , у = 129 + 201 n , где n – целое число.

Ответ: (1283+1999 n , 129+201 n ), где n – целое число.

3. Метод остатков.

Этот метод основан на исследовании возможных остатков левой и правой частей уравнения от деления на некоторое фиксированное натуральное число.

Замечание . Говоря строго математическим языком, для решения уравнения в данном случае применяется теория сравнений.

Рассмотрим примеры, которые раскрывают сущность данного метода.

Пример 3.1. Решить уравнение в целых числах x 3 + y 3 = 3333333;

Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в приложении 1), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

Пример 3.2. Решить уравнение в целых числах x 3 + y 3 = 4( x 2 y + xy 2 + 1).

Перепишем исходное уравнение в виде ( x + y ) 3 = 7( x 2 y + xy 2 ) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

Пример 3.3. Решить в целых числах уравнение x 2 + 1 = 3 y .

Решение. Заметим, что правая часть уравнения делится на 3 при любом целом y .

Исследуем какие остатки может иметь при делении на три левая часть этого уравнения.По теореме о делении с остатком целое число х либо делится на 3, либо при делении на три в остатке дает 1 или 2.

Если х = 3 k , то правая часть уравнения на 3 не делится.

Если х = 3 k+ 1, то x 2 + 1= (3 k+ 1) 2 +1=3 m +2, следовательно, опять левая часть на 3 не делится.

Если х = 3 k+ 2, то x 2 + 1= (3 k+ 2) 2 +1=3 m +2, следовательно, и в этом случае левая часть уравнения на три не делится.

Таким образом, мы получили, что ни при каких целых х левая часть уравнения на 3 не делится, при том, что левая часть уравнения делится на три при любых значениях переменной y . Следовательно, уравнение в целых числах решений не имеет.

Ответ: целочисленных решений нет.

Пример 3.4. Решить в целых числах x³ — 3y³ — 9z³ = 0 (1)

Решение. Очевидно, что решением уравнения будет тройка чисел (0; 0; 0).

Выясним, имеет ли уравнение другие решения. Для этого преобразуем уравнение (1) к виду

x ³ = 3 y ³ + 9 z ³ (2)

Так как правая часть полученного уравнения делится на 3, то и левая должна делиться на три, следовательно, так как 3 — число простое, х делится на 3, т.е. х = 3 k , подставим это выражение в уравнение (2), получим:

27 k 3 = 3 y ³ + 9 z ³, откуда

9 k 3 = y ³ + 3 z ³ (3)

следовательно, y ³ делится на 3 и y = 3 m . Подставим полученное выражение в уравнение (3): 9 k 3 = 27 m ³ + 3 z ³, откуда

3 k 3 = 9 m ³ + z ³ (4)

В свою очередь, из этого уравнения следует, что z 3 делится на 3, и z = 3 n . Подставив это выражение в (4), получим, что k 3 должно делиться на 3.

Итак, оказалось, что числа, удовлетворяющие первоначальному уравнению, кратны трём, и сколько раз мы не делили бы их на 3, опять должны получаться числа, кратные трём. Единственное целое число, удовлетворяющее этому условию, будет нуль, т. е. решение данного уравнения (0; 0; 0) является единственным.

4. Решение уравнений в целых числах сведением их к квадратным.

Пример 4.1. Решить в простых числах уравнение

х 2 – 7 х – 144 = у 2 – 25 у .

Решим данное уравнение как квадратное относительно переменной у . Получим: у = х + 9 или у = 16 – х .

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х , имеем

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

Пример 4.2 . Решить в целых числах уравнение x + y = x 2 – xy + y 2 .

Рассмотрим данное уравнение как квадратное уравнение относительно x :

x 2 – ( y + 1) x + y 2 – y = 0.

Дискриминант этого уравнения равен –3 y 2 + 6 y + 1. Он положителен лишь для следующих значений у : 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х , которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

Пример 4.3 . Решить уравнение в целых числах: 5 х 2 +5 у 2 +8 ху +2 у -2 х +2=0.

Рассмотрим уравнение как квадратное относительно х:

5 х 2 + (8 у — 2) х + 5 у 2 + 2 у + 2 = 0

D = (8 у — 2) 2 — 4·5(5 у 2 + 2 у + 2) = 64 у 2 — 32 у + 4 = -100 у 2 — 40 у – 40 = = -36( у 2 + 2 у + 1) = -36( у + 1) 2

Для того, чтобы уравнение имело решения, необходимо, чтобы D = 0.

-36( у + 1) 2 = 0. Это возможно при у = -1, тогда х = 1.

5. Разложение на множители .

Пример 5.1. Решить в целых числах уравнение x 2 – xy – 2 y 2 = 7.

Разложим левую часть на множители ( x – 2 y )( x + y ) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2 y = 7, x + y = 1;

2) x – 2 y = 1, x + y = 7;

3) x – 2 y = –7, x + y = –1;

4) x – 2 y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

Пример 5.2 . Решить уравнение в целых числах: х 2 + 23 = у 2

Решение. Перепишем уравнение в виде:

у 2 — х 2 = 23, ( у — х )( у + х ) = 23

Так как х и у – целые числа и 23 – простое число, то возможны случаи:

Решая полученные системы, находим:

Пример 5.3 . Решить уравнение в целых числах y 3 — x 3 = 91.

Решение. Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

( y — x )( y 2 + xy + x 2 ) = 91

Выпишем все делители числа 91: ± 1; ± 7; ± 13; ± 91

Проводим исследование. Заметим, что для любых целых x и y число

y 2 + yx + x 2 ≥ y 2 — 2| y || x | + x 2 = (| y | — | x |) 2 ≥ 0,

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда уравнение равносильно совокупности систем уравнений:

Решив системы, получим: первая система имеет решения (5; 6), (-6; -5); третья (-3; 4),(-4;3); вторая и четвертая решений в целых числах не имеют.

Пример 5.4 . Решить в целых числах уравнение x + y = xy .

Решение. Перенесем все члены уравнения влево и к обеим частям полученного уравнения прибавим (–1)

x + y – xy – 1 = – 1

Сгруппируем первое – четвертое и второе – третье слагаемые и вынесем общие множители, в результате получим уравнение: ( x — 1)( y — 1) = 1

Произведение двух целых чисел может равняться 1 в том и только в том случае, когда оба этих числа равны или 1, или (–1). Записав соответствующие системы уравнений и, решив их, получим решение исходного уравнения.

Пример 5.5 . Доказать, что уравнение ( x — y ) 3 + ( y — z ) 3 + ( z — x ) 3 = 30 не имеет решений в целых числах.

Решение. Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:

( x — y )( y — z )( z — x ) = 10

Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

6. Метод бесконечного спуска.

Метод спуска предполагает сначала последовательное выражение одной переменой чрез другую, пока в представлении переменной не останется дробей, а затем, последовательное «восхождение» по цепочке равенств для получения общего решения уравнения.

Пример 6.1 . Решить уравнение в целых числах 5 x + 8 y = 39.

Выберем неизвестное, имеющее наименьший коэффициент , и выразим его через другое неизвестное: . Выделим целую часть: Очевидно, что х будет целым, если выражение окажется целым, что, в свою очередь, будет иметь место тогда, когда число 4 – 3 y без остатка делится на 5.

Введем дополнительную целочисленную переменную z следующим образом: 4 –3 y = 5 z . В результате получим уравнение такого же типа, как и первоначальное, но уже с меньшими коэффициентами. Решать его будем уже относительно переменной y , рассуждая аналогично: . Выделяя целую часть, получим:

Рассуждая аналогично предыдущему, вводим новую переменную

Выразим неизвестную с наименьшим коэффициентом, в этом случае переменную z : = . Требуя, чтобы было целым, получим: 1 – u = 2 v , откуда u = 1 – 2 v . Дробей больше нет, спуск закончен.

Теперь необходимо «подняться вверх». Выразим через переменную v сначала z , потом y и затем x :

z = = = 3 v – 1; = 3 – 5 v .

Формулы x = 3+8 v и y = 3 – 5 v , где v – произвольное целое число, представляют общее решение исходного уравнения в целых числах.

Ответ: x = 3+8 v и y = 3 – 5 v.

7. Оценка выражений, входящих в уравнение.

Пример 7.1. Решить в целых числах уравнение ( х 2 + 4)( у 2 + 1) = 8ху

Решение. Заметим, что если ( х ;у ) – решение уравнения, то (- х ;- у ) – тоже решение.

И так как х = 0 и у = 0 не являются решением уравнения, то, разделив обе части уравнения на ху, получим:

Пусть х > 0, у > 0, тогда, согласно неравенству Коши,

тогда их произведение ( х + )( у + ) = 4·2 = 8, значит, х + = 4 и у + = 2.

Отсюда находим х = 2 и у = 1 – решение, тогда х = -2 и у = -1 – тоже решение.

Пример 7.2 . Решить уравнение в целых числах

x 2 + 13 y 2 – 6 xy = 100

Решение . x 2 + 13 y 2 –6 xy= 100 ↔ ( x- 3 y ) 2 + 4 y 2 = 100 . Так как ( x- 3 y ) 2 ≥ 0 , то 4 y 2 ≤ 100 , или │ 2 y│≤ 10 . Аналогично, в силу 4 y 2 ≥ 0 должно выполняться │x- 3 y│≤ 10 .


источники:

http://konkursita.ru/quizzes/332-metody-resheniya-sistem-ratsionalnykh-uravnenij

http://nsportal.ru/shkola/algebra/library/2016/04/19/olimpiadnye-zadaniya-reshenie-uravneniy-v-tselyh-chislah