Решение систем уравнений с параметром графическим методом

Графический метод в задачах с параметром

Данный метод используется не только в задачах с параметром, но и для решения обыкновенных уравнений, систем уравнений или неравенств. Он входит в стандартный курс школьной программы и наверняка вы с ним сталкивались, но в несколько упрощенном варианте. Сначала я кратко напомню, в чем заключается этот метод. Затем разберем, как его применять для решения задач с параметром, и рассмотрим несколько типовых примеров.

Для начала рассмотрим уравнение с одной переменной \(f(x)=0\). Для того, чтобы решить его графическим методом, нужно построить график функции \(y=f(x)\). Точки пересечения графика с осью абсцисс (ось \(х\)) и будут решениями нашего уравнения.

Или рассмотрим уравнение \(f(x)=g(x)\). Точно так же строим на одной координатной плоскости графики функций \(y=f(x)\) и \(y=g(x)\), абсциссы точек их пересечения будут решениями уравнения.

Стоит отдельно отметить, что для решения графическим методом необходимо выполнять очень качественный и точный рисунок.

Решить графическим методом уравнение \(x^2+3x=5x+3\).

Решение: Построим на одной координатной плоскости графики функций \(y=x^2+3x\) и \(y=5x+3\). См. рис.1.

\(y=5x+3\) – красный график; \(y=x^2+3x\) – синий график.

Из Рис.1 видно, что графики пересекаются в точках \((-1;2)\) и \((3;18)\). Таким образом, решением нашего уравнения будут: \(_<1>=-1; _<2>=3\).

Теперь рассмотрим уравнение с двумя переменными \(f(x,y)=0\). Решением этого уравнения будет множество пар точек \((x,y)\), которые можно изобразить в виде графика на координатной плоскости \((xOy)\). Если решать это уравнение аналитически, то, как правило, мы выражаем одну переменную через другую \((x,y=f(x))\) или \((x=f(y),y)\).

В качестве примера рассмотрим обыкновенное линейное уравнение \(2x-5y=10\). (1) Выражаем \(x=\frac<10+5y><2>\) – это называется общим решением уравнения. Изобразим его на координатной плоскости, построив график (Рис. 2):

Графический метод решения задач с параметрами

Теперь вы узнали, что такое параметр, и увидели решение самых простых задач.

Но подождите — рано успокаиваться и говорить, что вы все знаете. Есть множество типов задач с параметрами и приемов их решения. Чтобы чувствовать себя уверенно, мало посмотреть решения трех незатейливых задач.

Вот список тем, которые стоит повторить:

1. Элементарные функции и их графики. Парабола, синус, логарифм, арктангенс и все остальные — всех их надо знать «в лицо».

Только после этого можно переходить к самому простому и наглядному способу решения задач с параметрами — графическому. Конечно, он не единственный. Но начинать лучше всего именно с него.

Мы разберем несколько самых простых задач, решаемых графическим методом. Больше задач — в видеокурсе «Графический метод решения задач с параметрами» (бесплатно).

1. При каких значениях параметра a уравнение имеет ровно 2 различных решения?

Дробь равна нулю тогда и только тогда, когда ее числитель равен нулю, а знаменатель не равен нулю.

В первом уравнении выделим полный квадрат:

Это уравнение окружности с центром в точке и радиусом равным 2. Обратите внимание — графики будем строить в координатах х; а.

Уравнение задает прямую, проходящую через начало координат. Нам нужны ординаты точек, лежащих на окружности и не лежащих на этой прямой.

Для того чтобы точка лежала на окружности, ее ордината а должна быть не меньше 0 и не больше 4.

Кроме того, точка не должна лежать на прямой , которая пересекает окружность в точках и Координаты этих точек легко найти, подставим в уравнение окружности.

Точка С также не подходит нам, поскольку при мы получим единственную точку, лежащую на окружности, и единственное решение уравнения.

2. Найдите все значения a, при которых уравнение имеет единственное решение.

Уравнение равносильно системе:

Мы возвели обе части уравнения в квадрат при условии, что (смотри тему «Иррациональные уравнения»).

Раскроем скобки в правой части уравнения, применяя формулу квадрата трехчлена. Получаем систему.

Приводим подобные слагаемые в уравнении.

Заметим, что при прибавлении к правой и левой части числа 49 можно выделить полные квадраты:

Решим систему графически:

Уравнение задает окружность с центром в точке , где радиус

Неравенство задает полуплоскость, которая расположена выше прямой , вместе с самой этой прямой.

Исходное уравнение имеет единственное решение, если окружность имеет единственную общую точку с полуплоскостью. Другими словами, окружность касается прямой, заданной уравнением

Пусть С — точка касания.

На координатной плоскости отметим точки и , в которых прямая пересекает оси Y и Х.

Рассмотрим треугольник ABP. Он прямоугольный, и радиус окружности PC является медианой этого треугольника. Значит по свойству медианы прямоугольного треугольника, проведенной к гипотенузе.

Из треугольника ABP найдем длину гипотенузы AB по теореме Пифагора.

Решая это уравнение, получаем, что

3. Найдите все положительные значения параметра а, при каждом из которых система имеет единственное решение.

График уравнения — окружность с центром и радиусом равным 2.

График уравнения — две симметричные окружности и радиуса 2 c центрами в точках и

Второе уравнение при задает окружность с центром в точке и радиусом a.

Вот такая картинка, похожая на злую птицу. Или на хрюшку. Кому что нравится.

Система имеет единственное решение в случаях, когда окружность , задаваемая вторым уравнением, касается только левой окружности или только правой

Если a — радиус окружности , то это значит, что (только правая) или (только левая).

Пусть А — точка касания окружности и окружности

, (как гипотенуза прямоугольного треугольника МNР с катетами 3 и 4),

В — точка касания окружности и окружности

длину MQ найдем как гипотенузу прямоугольного треугольника KMQ с катетами 7 и 4; Тогда для точки В получим:

Есть еще точки С и D, в которых окружность касается окружности или окружности соответственно. Однако эти точки нам не подходят. В самом деле, для точки С:

, но и это значит, что окружность с центром в точке М, проходящая через точку С, будет пересекать левую окружность и система будет иметь не одно, а три решения.

Аналогично, для точки D:

и значит, окружность с центром М, проходящая через точку D, будет пересекать правую окружность и система будет иметь три решения.

4. При каких значениях a система уравнений имеет 4 решения?

Конечно же, решаем графически. Только непуганый безумец возьмется решать такую систему аналитически : -)

И в первом, и во втором уравнении системы уже можно разглядеть известные «базовые элементы» (ссылка) — в первом ромбик, во втором окружность. Видите их? Как, еще нет? — Сейчас увидите!

Просто выделили полный квадрат во втором уравнении.

Сделаем замену Система примет вид:

Вот теперь все видно! Рисовать будем в координатах

Графиком первого уравнения является ромб, проходящий через точки с координатами и

Графиком второго уравнения является окружность с радиусом и центром в начале координат.

Когда же система имеет ровно 4 решения?

1) В случае, когда окружность вписана в ромб, то есть касается всех сторон ромба.

Запишем площадь ромба двумя способами — как произведение диагоналей пополам и как произведение стороны на высоту, проведенную к этой стороне.

Диагонали нашего ромба равны 8 и 6. Значит,

Сторону ромба найдем по теореме Пифагора. Видите на рисунке прямоугольный треугольник со катетами 3 и 4? Да, это египетский треугольник, и его гипотенуза, то есть сторона ромба, равна 5. Если h — высота ромба, то

При этом Мы помним, что если окружность вписана в ромб, то диаметр этой окружности равен высоте ромба. Отсюда

Мы получили ответ:

2) Есть второй случай, и мы его найдем.

Давайте посмотрим — если уменьшить радиус окружности, сделав , окружность будет лежать внутри ромба, не касаясь его сторон. Система не будет иметь решений, и нам это не подходит.

Пусть радиус окружности больше, чем , но меньше 3. Окружность дважды пересекает каждую из четырех сторон ромба, и система имеет целых 8 решений. Опять не то.

Пусть радиус окружности равен 3. Тогда система имеет 6 решений.

А что, если ? Окружность пересекает каждую сторону ромба ровно 1 раз, всего 4 решения. Подходит!

Значит, Объединим случаи и запишем ответ:

Больше задач и методов решения — на онлайн-курсе Анны Малковой. И на интенсивах ЕГЭ-Студии в Москве.

Решение уравнений, систем уравнений с параметрами графическим способом
план-конспект урока по алгебре (11 класс) на тему

При подготовке к экзаменам, с выпускниками 11 класса я провожу семинары по решению задач.. На этом семинаре решались задачи с параметрами. Задачи взяты из сборников ЕГЭ.

Скачать:

ВложениеРазмер
obshchaya.ppt2.56 МБ

Предварительный просмотр:

Подписи к слайдам:

Решение уравнений, систем уравнений с параметрами графическим способом. ГБОУ СОШ №249 Теплякова Л.Ф.

Эпиграф Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи – решайте их. Д. Пойа “Математическое открытие”

Переменные a, b, c, . которые при решении уравнения считаются постоянными, называются параметрами , а само уравнение называется уравнением, содержащим параметры. Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, . а неизвестные — буквами x, y, z.

Решить уравнение с параметрами — значит указать, при каких значениях параметров существуют решения и каковы они. Существует несколько алгоритмов решения уравнений с параметрами.

Аналитический способ решения. Является наиболее сложным способом решения выражений с параметром. Требует точное знание таких понятий как область определения, равносильность, тождественность, следствие, а также теорем связанных с этими понятиями. В ЕГЭ представлены варианты которые возможно решить наиболее простым способом.

Алгоритм решения уравнений с параметром графическим способом. 1. Находим область определения. 2. Переносим выражение содержащее a в правую часть. 3. В системе координат строим графики для левой и правой части для тех значений х, которые входят в область определения данного уравнения ( неравенства). 4.Находим точки пересечения графиков функций, определяем абсциссы точек пересечения. Для этого достаточно решить уравнение относительно х. 4. Записываем ответ.

Для успешного решения задач типа С5 необходимо : Уметь решать рациональные, иррациональные, показательные, тригонометрические и логарифмические уравнения, их системы Уметь строить графики изученных функций Использовать для приближенного решения графический метод

Уравнения некоторых линий

Найдите все значения a , при каждом из которых уравнение | | x | + 5 – a | = 2 имеет ровно три корня.

Найдите все значения p, при каждом из которых для любого q система имеет решения.

Рассмотрим первое уравнение x + y = 1 Заметим, что выражение является уравнением окружности с центром в точке (0 ; 0) и радиусом равным одному. Решение. 2 2

Теперь исследуем второе выражение : y = q|x| + p Графиком | х | является так называемая галочка. От коэффициента q зависит насколько отдалены от оси OY её ветви и куда они направлены, так при q 0 верх. От коэффициента р зависит передвижение графика по оси OY . Для наглядного решение нам потребуется построение графика.

Таким образом система будет иметь решение при p >= -1 и p 12 0 4

1. Найти а при котором данная функция имеет более двух точек экстремума 2. Найдите все значения параметра a при каждом из которых функция имеет хотя бы одну точку максимума

Раскрываем модуль: 1) При х 2) При х

Найдем вершины парабол 1) 2) Приравняем функции и найдем значение а а =х 2

ГРАФИК ИМЕЕТ 2 ТОЧКИ ЭКСТРЕМУМА , НО НЕТ ТОЧЕК МАКСИМУМА

ОТВЕТ : а принадлежит [ -2 ; -1 ] и [ 1 ; 2 ] ПРИ ДАННЫХ ЗНАЧЕНИЯХ ФУНКЦИЯ ИМЕЕТ ТРИ ТОЧКИ ЭКСТРЕМУМА И ТОЧКУ МАКСИМУМА

Благодорим ребят : Радимушкина Дмитрия, Заботину Аллу, Иванову Алину, Клушенцову Александру, Дорофееву Элеонору, Сонину Маргариту, Поводову Анастасию, Янушевского Олега , ЗА ПОМОШЬ В ПОДГОТОВКЕ ПРЕЗЕНТАЦИИ.

По теме: методические разработки, презентации и конспекты

презентация к уроку решение систем уравнений и неравенств графическим способом

презентация к уроку» решение систем уравнений и неравенств графическим способом».

Интегрированный урок по алгебре и истории математики в 7 классе по теме: «Решение линейных систем уравнений с двумя переменными». систем

Урок алгебры в 7 классе Тема урока: «Решение систем линейных уравнений»Ведущая идея урока: «Ученик учится САМ, учитель только помогает»Цели урока:а) показать алгоритм решения системы линейных ур.

Урок математики в 9 классе «Решение систем уровнений II степени графическим способом»

урок предназначен для закрепления навыков построения графиков функций и их применение при решении систем уравнений.

«Графическое решение уравнений и неравенств с параметрами»

Цели:1) Образовательная -ученик должен знать способы решения задач с параметрами.2) Развивающая – ученик должен уметь применять способы решения задач с параметрами.

Урок на тему «Решение систем уравнений способом подстановки и способом сложения».

Урок изучения новой темы в компетентностно- констектной модели обучения и воспитания (первый этап всей изучаемой темы).

План-конспект урока “Решение систем уравнений” (способ подстановки и способ сложения)

Приводится план-конспект урока алгебры в 9 классе.

Урок «Решение заданий с параметрами графическим способом»

В материалах представлена разработка урока в 11 классе.


источники:

http://ege-study.ru/graficheskij-metod-resheniya-zadach-s-parametrami/

http://nsportal.ru/shkola/algebra/library/2015/09/04/reshenie-uravneniy-sistem-uravneniy-s-parametrami-graficheskim