Решение систем уравнений второй степени объяснение

Решение систем уравнений второй степени объяснение

Система уравнений второй степени. Способы решения

Система уравнений второй степени – это система уравнений, в которой есть хотя бы одно уравнение второй степени.

Систему из двух уравнений, в которой одно уравнение второй степени, а второе уравнение первой степени, решают следующим образом:

1) в уравнении первой степени одну переменную выражают через другую;

2) подставляют полученное выражение в уравнение второй степени, благодаря чему получается уравнение с одной переменной;

3) решают получившееся уравнение с одной переменной;

4) находят соответствующие значения второй переменной.

Пример : Решим систему уравнений

1) Второе уравнение является уравнением первой степени. В ней выражаем переменную x через y:

2) в первом уравнении вместо x подставляем полученное выражение 1 – 2y:

Раскрываем скобки и упрощаем:

Приравниваем уравнение к нулю и решаем получившееся квадратное уравнение:

3) Решив квадратное уравнение, найдем его корни:

4) Осталось найти значения x. Для этого в одно из двух уравнений системы просто подставляем значение y. Второе уравнение проще, поэтому выберем его.
Итак, подставляем значения y в уравнение x + 2y = 1 и получаем:
1) х + 2(-0,125) = 1
х – 0,25 = 1
х = 1 + 0,25
х1 = 1,25.

Способы решения системы уравнений с двумя уравнениями второй степени.

1. Замена системы уравнений равносильной совокупностью двух систем.

Пример : Решим систему уравнений

Здесь нет уравнений первой степени, поэтому решать их вроде бы сложнее. Но в первом уравнении многочлен можно разложить на линейные множители и применить метод группировки:

(Пояснение-напоминание: x – 3y встречается в выражении дважды и является общим множителем в многочлене (x – 3y)(x + 3y) – 1(x – 3y). По правилу группировки, мы умножили его на сумму вторых множителей и получили равносильное уравнение).

В результате наша система уравнений обретает иной вид:

Первое уравнение равно нулю только в том случае, если x – 3y = 0 или x + 3y – 1 = 0.

Значит, нашу систему уравнений мы можем записать в виде двух систем следующего вида:

Мы получили две системы, где первые уравнения являются уравнениями первой степени. Мы уже можем легко решить их. Понятно, что решив их и объединив затем множество решений этих двух систем, мы получим множество решений исходной системы. Говоря иначе, данная система равносильна совокупности двух систем уравнений.

Итак, решаем эти две системы уравнений. Очевидно, что здесь мы применим метод подстановки, подробно изложенный в предыдущем разделе.

Обратимся сначала к первой системе.
В уравнении первой степени выразим х через у:

Подставим это значение во второе уравнение и преобразим его в квадратное уравнение:

Как решается квадратное – см.раздел «Квадратное уравнение». Здесь мы сразу напишем ответ:

Теперь подставим полученные значения у в первое уравнение первой системы и решим его:

Итак, у нас есть первые ответы:

Переходим ко второй системе. Не будем производить вычисления – их порядок точно такой же, что и в случае с уравнениями первой системы. Поэтому сразу напишем результаты вычислений:

Таким образом, исходная система уравнений решена.

1 1
(–3 — ; –1 — ), (3; 1), (2,5; –0,5), (–2; 1).
2 6

2. Решение способом сложения.

Пример 2 : Решим систему уравнений

Второе уравнение умножим на 3:

Зачем мы умножили уравнение на 3? Благодаря этому мы получили равносильное уравнение с числом -3y, которое встречается и в первом уравнении, но с противоположным знаком. Это поможет нам буквально при следующем шаге получить упрощенное уравнение (они будут взаимно сокращены).

Сложим почленно левые и правые части первого уравнения системы и нашего нового уравнения:

Сводим подобные члены и получаем уравнение следующего вида:

Упростим уравнение еще, для этого сокращаем обе части уравнения на 5 и получаем:

Приравняем уравнение к нулю:

Это уравнение можно представить в виде x(x – 2y) = 0.

Здесь мы получаем ситуацию, с которой уже сталкивались в предыдущем примере: уравнение верно только в том случае, если x = 0 или x – 2y = 0.

Значит, исходную систему опять-таки можно заменить равносильной ей совокупностью двух систем:

Обратите внимание: во второй системе уравнение x – 2y = 0 мы преобразовали в x = 2y.

Итак, в первой системе мы уже знаем значение x. Это ноль. То есть x1 = 0. Легко вычислить и значение y: это тоже ноль. Таким образом, первая система имеет единственное решение: (0; 0).

Решив вторую систему, мы увидим, что она имеет два решения: (0; 0) и (–1; –0,5).

Таким образом, исходная система имеет следующие решения: (0; 0) и (–1; –0,5).

3. Решение методом подстановки.

Этот метод был применен в начале раздела. Здесь мы выделяем его в качестве одного из способов решения. Приведем еще один пример.

Пример . Решить систему уравнений

│х + у = 9
│у 2 + х = 29

Первое уравнение проще, поэтому выразим в нем х через у:

Теперь произведем подстановку. Подставим это значение х во второе уравнение, получим квадратное уравнение и решим его:

у 2 + 9 – у = 29
у 2 – у – 20 = 0

D = b 2 – 4ас = 1 – 4 · 1 · (–20) = 81

Осталось найти значения х. Первое уравнение проще, поэтому им и воспользуемся:

1) х + 5 = 9
х = 9 – 5
х1 = 4

2) х – 4 = 9
х = 9 + 4
х2 = 13

Изящные способы решения систем уравнений с двумя переменными второй степени

Разделы: Математика

Цели урока:

    рассмотреть интересные способы решения систем уравнений с двумя переменными второй степени;
  • продолжить работу по формированию у учащихся умений решать системы уравнений с двумя переменными различными способами;
  • развивать логическое мышление, способность к абстрагированию, анализу.

Ход урока

Решение систем, содержащих два уравнения с двумя переменными второй степени весьма трудная задача, но в некоторых случаях системы могут быть решены с помощью простых и изящных приемов. Открыть некоторые из них – это цель сегодняшнего урока.

I. Проверка домашнего задания.

Решить систему уравнений способом подстановки и графически.

Первый ученик показывает решение системы уравнений:

(1)— способом подстановки.
1) ху=-3;
2)

умножим обе части уравнения на ,получим:пусть и 0,тогда по теореме, обратной теореме Виета, получим:

Если z =9,то ,

z =1, то

-3,-1,1,3 отличны от нуля, значит, они являются корнями уравнения

3) Если то то
то то

Ответ:(3;-1), (-3;1), (-1;3), (1;-3)-решения системы (1).

Второй ученик показывает решение системы уравнений:

— графическим способом.

В одной системе координат построим графики уравнений: и ху= -3.

-графиком этого уравнения является окружность с центром в точке (0;0) и радиусом .

В треугольнике АВС,АВС =90°, АВ=1, ВС=3, АС=.

Длину отрезка АС= возьмем за радиус окружности .

ху=3; у=; — графиком этого уравнения является гипербола, ветви которой расположены во II и IV координатных углах.

х-6-3-1-0.50.5136
у0.5136-6-3-1-0.5

Графики изображены на рисунке 1.

Графики и пересекаются в четырех точках (они обозначены буквами А, В, С, Д), следовательно, данная система уравнений имеет четыре решения:

Интересно заметить, что решения данной системы симметричны. Точки С и В и А и Д симметричны относительно начала координат. Точки С и А и Д и В симметричны относительно биссектрисы I и III координатных углов (прямой у=х), поэтому их координаты “меняются местами”.

II. “Открытие” новых способов решения этой же системы.

Для решения этой системы есть более изящные и красивые способы. Открыть их, понять и научиться применять — это цель нашего урока. Поставив цель мы в конце урока должны подвести итог нашей работе, для этого мы будем использовать идею Эдварда де Боно, которую он назвал “Шесть шляп — шесть способов мышления”- они нам и помогут с разных позиций проанализировать урок, работая в группах.

Работа в группах.

Решить систему новым способом (на работу 5-7мин.).

Свое решение на доске показывает одна из групп:

(1)

Система (1) “распадается” на две более простые системы:

(2)(3)

Каждое решение системы (1) является решением хотя бы одной из систем (2) или (3).И каждое решение системы (2) и (3) является решением системы (1).

Системы (2) и (3) является симметричными, решим каждую из них:

(1) (2)
Пусть и корни уравненияПусть и корни уравнения

и его корни,

решения системы (1).

и его корни,

решения системы (2)

Для того чтобы понять содержательную сторону приведенного решения, обратимся к графической иллюстрации. На рис.2 в одной системе координат показано графическое решение систем.

и

Каждая прямая х+у =2 и х+у =-2 пересекает гиперболу ху=-3 в двух точках, а всего мы имеем четыре точки пересечения (они обозначены буквами А, В, С, Д). Это те же точки, которые получились при пересечение гиперболы и окружности (смотри рис.1).

Еще один способ решения данной системы представил один из учеников, для которого это было домашнее индивидуальное задание.

Сложим почленно первое уравнение системы сначала с уравнением 2ху=-6,а затем с уравнением -2ху=6.Получим систему:

Из первого уравнения получаем, что

Из второго уравнения получаем, что

Рассматривая каждое уравнение первой строки совместно с каждым уравнение второй строки приходим к четырем системам линейных уравнений:

Решив каждую из них получим следующие решения исходной системы:

Решение проиллюстрировано графически на рис.3.

Теперь мы видим, что четыре прямые при попарном пересечении указывают нам те же самые точки, которые получились при пересечении окружности и гиперболы (смотри рис.1).

И еще разберем один из способов решения системы

Данная система является симметричной и решается она очень красиво с помощью введения новых переменных. Пусть , и учитывая, что ,получим:

Если u=-3, то или тогда получим:

и

Полученные системы тоже являются симметричными системами, которые мы уже решали. Итак,(3;1), (-1;3), (-3;1),(1;-3)-решения данной системы.

Мы рассмотрели пять различных способов решения одной и той же системы уравнений. Каждый выберет для себя способ, который ему больше всего понравился, самое главное — что каждый из Вас научился решать системы такого вида и поэтому эпиграфом урока могли служить слова Б.В.Гнеденко: “Ничто так не содействует усвоению предмета, как действие с ним в разных ситуациях”.

1 задание. Решить систему уравнений:

2 задание. На рисунке 4 построены: окружность парабола и прямая у=2х+10.Составьте всевозможные системы двух уравнений с двумя переменными и укажите их решения.

3 задание. Система уравнений. где b-произвольное число, может иметь одно, два, три или четыре решения, а также может не иметь решений. Запишите конкретную систему, которая имела бы два решения. Проиллюстрируйте решение системы, графически на рисунке 5.

1 задание. Решить систему уравнений:

2 задание. На рисунке 6 построены кубическая парабола у=х, гипербола у= и прямая у=2х.

Составьте всевозможные системы двух уравнений с двумя переменными и укажите их решения.

3 задание. Система уравнений где b- произвольное число, может иметь одно, два, три или четыре решения, а также может не иметь решений. Запишите конкретную систему, которая имела бы одно решение. Проиллюстрируйте решение графически на рисунке 5.

IV. Подведение итогов урока.

Для анализа урока мы будем использовать идею Эдварда де Боно, которую он назвал “Шесть шляп”.

Зелёная шляпа-символ свежей листвы, изобилия и плодородия. Она символизирует творческое начало и расцвет новых идей.

Итак, первая группа ответит на вопросы: пригодятся ли нам знания, полученные на уроке, умения исследовать и находить различные способы решения систем уравнений?

Жёлтая шляпа — солнечный, жизнеутверждающий цвет. Она полна оптимизма, под ней живёт надежда и позитивное мышление.

Итак, вторая группа отметит какие положительные моменты были на уроке и обоснует свой оптимизм.

Белая шляпа — белый цвет беспристрастен и объективен. В ней “варятся” мысли, “замешанные” на цифрах и фактах.

Итак, третья группа должна изложить происходящее на уроке опираясь и подкрепляя свой ответ цифрами и фактами.

Красная шляпа-символ восприятия действительности на уровне чувств. В ней можно отдать себя во власть эмоций.

Итак, четвёртая группа постарается высказать свои эмоции по поводу данного урока.

Чёрная шляпа — черный цвет мрачный, зловещий, словом — недобрый. Это критика, доходящая до въедливости.

Итак, пятая группа должна высказать свое мнение о том, что получилось на уроке или что требует доработки.

Синяя шляпа — синий цвет холодный, это цвет неба. Синяя шляпа связана с организацией, обобщением того, что достигнуто.

Итак, шестая группа при подведении итогов урока должна указать, на что необходимо обратить внимание при изучении данной темы?

V. Домашнее задание.

А.П. Ершова, В.В. Голобородько “Самостоятельные и контрольные работы по алгебре и геометрии для 9 класса” (разноуровневые дидактические материалы). С-9,стр. 19 (по уровням сложности)

Урок «Некоторые приемы решения систем уравнений второй степени с двумя переменными»

Краткое описание документа:

Видеоурок «Некоторые приёмы решения систем уравнений второй степени с двумя переменными» создан как наглядное пособие для ведения уроков алгебры по данной теме. В материале содержится объяснение на примерах, каким образом применяются различные способы решения систем уравнений с двумя переменными.

Структурированный материал, четкое изображение, понятное объяснение голосовым сопровождением дают возможность представить данную тему в удобной форме, понятно для всех учеников. Для большей эффективности подачи материала используются анимационные эффекты, выделение цветом. Благодаря данным инструментам видеоурок может заменить объяснение учителя, освободить время учителя на уроке для улучшения качества индивидуальной работы.

В начале урока представляется его тема, а затем предлагается рассмотреть решение системы уравнений х 2 -4у 2 -х+2у=0 и х 2 -ху+у=0. Решение начинается с разложения уравнения на линейные множители. После применения формулы сокращенного умножения и вынесения общих множителей левая часть первого уравнения преобразуется в произведение (х-2у)(х+2у-1). Из него следует разбиение на два уравнения х-2у=0 и х+2у-1=0. Такое разбиение позволяет представить данную систему в виде совокупности уравнений, в которой каждое из этих уравнений составляет систему со вторым уравнением исходной системы. Очевидно, систему уравнений х-2у=0 и х 2 -ху+у=6 можно решить методом подстановки. Для этого из первого уравнения выражается х=2у, который подставляется во второе равнение. Второе уравнение преобразуется в квадратное уравнение с одной переменной. Решив квадратное уравнение, получаем результаты у1=-2 и у2=1,5. После подстановки их в выражение для вычисления х находим значения х1=-4 и х2=3. Таким же образом методом подстановки решается вторая система уравнений. После подстановки значения х из х+2у=0 во второе уравнение получаем квадратное уравнение с одной переменной. Решения данного уравнения у1=(2+√34)/6 и у2=(2-√34)/6. После подстановки значений у в выражение для вычисления х, получаем значения х1=(1-√34)/3 и х2=(1+√34)/3. Соответственно, после сделанных вычислений получаем четыре пары значений, которые являются корнями данной системы уравнений.

В решении следующей системы уравнений 3х 2 +4у=ху и х 2 -у=4ху предлагается использовать способ сложения. После сложения левых и правых частей обоих уравнений образуется суммарное уравнение 7х2=17ху. Данное уравнение после преобразования преобразуется в произведение х(7х-17у)=0, которое в свою очередь развивается на два уравнения х=0 и 7х-17у=0. Каждое из этих уравнений со вторым уравнением исходной системы образует новую систему. Решением первой системы будет пара значений х1=0, у1=0. При решении второй системы х выражается из первого уравнения через у. Выражение для х подставляется во второе уравнение. Из него определяется у, значение которого у2=0 и у3=-49/187. Соответствующие им х2=0 и х3=-119/187. Следовательно, решениями системы будут две пары значений: (0;0) и (-119/187;-49/187).

Следующей предлагается решить систему уравнений 2х 2 +3ху+у2=0 и х 2 -4ху-2у-6=0. Чтобы определить решения системы, можно разделить обе части первого уравнения на у2, учитывая, что у≠0. После деления полученное равносильное уравнение 2(х/у) 2 +3(х/у)+1=0. Очевидно, если ввести новую переменную t=х/у, то получим обычное квадратное уравнение 2t 2 +3t+1=0. Решив данное уравнение, получим корни t1=-1 и t2=-0,5. Соответственно, получаем два уравнения х/у=-1 и х/у=-0,5. Иначе данные уравнения можно представить х=-у и х=-0,5у. Вместе с уравнением х 2 -4ху-2у-6=0 каждое из этих уравнений составляет новую систему, а вместе совокупность равносильных систем. После подстановки значения х из второго уравнения в первое, а затем вычисления корней уравнения, получаем из двух систем четыре пары значений, которые являются решениями системы: (-1-√31)/5; 1+√31)/5), (-1+√31)/5; 1-√31)/5), (-1-√15)/4,5; 2+√60)/4,5), (√15-1)/4,5; 2-√60)/4,5).

Последний рассмотренный пример описывает решение симметрических систем. Предлагается решить систему уравнений х 2 +3ху+у2=9 и ху+х+у=3. Обращается внимание учеников на то, что уравнения данной системы содержат выражения х+у, ху, х 2 +у 2 . Еще одна особенность данной системы, что в ней можно произвести замену х на у и наоборот, при этом вид системы не изменится. Таким системы называются симметрическими. Данное понятие выделено на экране для запоминания. Отмечается, что такие системы лучше всего решать введением новой переменной. Для этого вводят новую переменную u= х+у и переменную v=ху. В результате такой замены получили систему уравнений u 2 -2v+3v=9 и v+u=3. После сокращения подобных слагаемых получаем первое уравнение в виде u2+v=9. Используя метод подстановки, получаем решение системы с новыми переменными: u1=-2, v1=5 и u2=3, v3=0. Используя данные пары решений, получаются две новые системы, которые необходимо решить. Первая система из уравнений х+у=-2 и ху=5, вторая система из уравнений х+у=3 и ху=0. После вычисления определяется, что решениями данных систем будут пары значений х1=3, у1=0 и х2=0, у2=3.

Видеоурок «Некоторые приёмы решения систем уравнений второй степени с двумя переменными» может быть полезен учителю на уроке в школе и при подаче материала в ходе дистанционного обучения. Также понятное наглядное объяснение может помочь ученику в самостоятельном изучении материала.


источники:

http://urok.1sept.ru/articles/515367

http://urokimatematiki.ru/urok-nekotorie-priemi-resheniya-sistem-uravneniy-vtoroy-stepeni-s-dvumya-peremennimi-667.html