Решение системы комплексных уравнений методом крамера

Решение системы комплексных уравнений методом крамера

Сервис предоставляет подробное решение.

Найдём решение системы линейных уравнений методом Крамера.

Примеры

Система линейных уравнений с двумя неизвестными

Система линейных ур-ний с тремя неизвестными

Система четырёх уравнений

Система линейных уравнений с четырьмя неизвестными

© Контрольная работа РУ — калькуляторы онлайн

Где учитесь?

Для правильного составления решения, укажите:

Метод Крамера онлайн

Данный онлайн калькулятор находит решение системы линейных уравнений (СЛУ) методом Крамера. Дается подробное решение. Для вычисления выбирайте количество переменных. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить.»

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Метод Крамера

Метод Крамера − это метод решения квадратной системы линейных уравнений с отличным от нуля определителем основной матрицы. Такая система линейных уравнений имеет единственное решение.

Пусть задана следующая система линейных уравнений:

(1)

Заменим данную систему (1) эквивалентным ей матричным уравнением

Ax=b(2)

где A -основная матрица системы:

(3)

а x и b − векторы столбцы:

первый из которых нужно найти, а второй задан.

Так как мы предполагаем, что определитель Δ матрицы A отличен от нуля, то существует обратная к A матрица A -1 . Тогда умножая тождество (2) слева на обратную матрицу A -1 , получим:

A -1 Ax=A -1 b.

Учитывая, что произведение взаимно обратных матриц является единичной матрицей (A -1 A=E), получим

x=A -1 b.(4)

Обратная матрица имеет следующий вид:

(5)

где Aij − алгебраическое дополнение матрицы A, Δ − определитель матрицы A.

где Δi − это определитель матрицы, полученной из матрицы A, заменой столбца i на вектор b.

Мы получили формулы Крамера:

Алгоритм решения системы линейных уравнений методом Крамера

  1. Вычислить определитель Δ основной матрицы A.
  2. Замена столбца 1 матрицы A на вектор свободных членов b.
  3. Вычисление определителя Δ1 полученной матрицы A1.
  4. Вычислить переменную x11/Δ.
  5. Повторить шаги 2−4 для столбцов 2, 3, . n матрицы A.

Примеры решения СЛУ методом Крамера

Пример 1. Решить следующую систему линейных уравнений методом Крамера:

Запишем ее в матричной форме: Ax=b, где

.

Вычислим определитель основной матрицы A:

.

Заменим столбец 1 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A1:

.

Заменим столбец 2 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A2:

.

Заменим столбец 3 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A3:

.

Решение системы линейных уравнений вычисляется так:

Пример 2. Решить следующую систему линейных уравнений методом Крамера:

Запишем ее в матричной форме: Ax=b, где

Найдем определитель матрицы A. Для вычисления определителя матрицы, приведем матрицу к верхнему треугольному виду.

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3,4 со строкой 1, умноженной на -1/4,-3/4,-2/4 соответственно:

Выбираем самый большой по модулю ведущий элемент столбца 2. Для этого меняем местами строки 2 и 4. При этом меняется знак определителя на «−».

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строки 3,4 со строкой 2, умноженной на -26/76,2/76 соответственно:

Выбираем самый большой по модулю ведущий элемент столбца 3. Для этого меняем местами строки 3 и 4. При этом меняется знак определителя на «+».

Исключим элементы 3-го столбца матрицы ниже главной диагонали. Для этого сложим строку 4 со строкой 3, умноженной на -817/1159:

Мы привели матрицу к верхнему треугольному виду. Определитель матрицы равен произведению всех элементов главной диагонали:

Заменим столбец 1 матрицы A на вектор столбец b:

Для вычисления определителя матрицы A1, приведем матрицу к верхнему треугольному виду, аналогично вышеизложенной процедуре. Получим следующую матрицу:

Определитель матрицы равен произведению всех элементов главной диагонали:

Заменяем столбец 2 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Заменяем столбец 3 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Заменяем столбец 4 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Решение системы линейных уравнений вычисляется так:

Метод Крамера онлайн

В нашем калькуляторе вы бесплатно найдете решение системы линейных уравнений методом Крамера онлайн с подробным решением и даже с комплексными числами. Каждый определитель, использованный в расчетах, можно просмотреть отдельно, а также проверить точный вид системы уравнений, если вдруг определитель основной матрицы оказался равен нулю.

Подробнее о том, как пользоваться нашим онлайн калькулятором, вы можете прочитать в инструкции.

О методе

При решении системы линейных уравнений методом Крамера выполняются следующие шаги.

  1. Записываем расширенную матрицу.
  2. Находим определитель основной (квадратной) матрицы.
  3. Для нахождения i-ого корня подставляем столбец свободных членов в основную матрицу на i-ое место и находим ее определитель. Далее находим отношение полученного определителя к основному, это и есть очередное решение. Проделываем данную операцию для каждой переменной.
  4. В случае, если основной определитель матрицы равен нулю, то система уравнений либо несовместна, либо имеет бесконечное множество решений. К сожалению метод Крамера не позволяет более точно ответить на этот вопрос. Тут вам поможет метод Гаусса.

Чтобы лучше всего понять принцип работы алгоритма, введите любой пример и изучите полученный ответ.


источники:

http://matworld.ru/calculator/kramer-method-online.php

http://matrix.reshish.ru/cramer.php