Решение системы нелинейных уравнений графически

Графический метод решения систем нелинейных уравнений, 8-й класс

Разделы: Математика

Класс: 8

Цель урока:

  • совершенствование навыки построения графиков функций;
  • применение умений, полученных на уроках информатики (графики в Ехсе1);
  • развитие современной функциональной грамотности.

Задачи урока:

  • Обучающие: знакомство с графическим способом решения систем нелинейных уравнений; развитие умения применять теоретические знания в процессе
    решения систем уравнений;
  • Развивающие: развитие познавательного интереса к предмету; развитие навыка самостоятельного поиска необходимой
    информации; развитие навыка самоконтроля.
  • Воспитательные: развитие культуры общения; желания помочь товарищу в затруднительных ситуациях.
  • Здоровье-сберегающие: соблюдение гигиены умственного труда при работе с компьютером.

Виды используемых на уроке средств ИКТ: СD, универсальные, ресурсы Интернет.

Необходимое аппаратное и программное обеспечение: Мультимедийный компьютер, программные средства, наушники/

Оборудование: Чертежные инструменты.

Ход урока

I. Организационный момент

Приветствие и размещение на рабочих местах.

Учитель. Мы продолжаем изучение большой темы “Решение систем нелинейных уравнений”. Какие способы решения нами были рассмотрены? (Метод постановки, метод сложения, метод введения новых неизвестных, метод решения однородных уравнений.)

Какой еще способ нам известен из курса алгебры седьмого класса? (Графический.)

Почему он так называется? (В одной и той же системе координат строим графики обоих уравнений и находим координаты точек их пересечения.)

! Цель сегодняшнего урока: научиться решать нелинейные системы уравнений графическим методом, Используя чертежные инструменты и программу построения графиков на компьютере.

Систему координат, в которой мы будем строить графики, называют декартовой,. Почему? Ответ на этот вопрос вы узнаете, посмотрев диск.

Учащиеся переходят к компьютерам, надевают наушники и читают и слушают информацию из диска “Алгебра Кирилла и Мефодия 7–8”, тема “Графики функций” о Рене Декарте и созданной им системе координат.

П. Актуализация опорных знаний

Фронтальная беседа. Презентация “Графики функций”.

1. Какие функции нам известны? Как называются их графики?

а) у = кх + Ь – линейная функция. Графиком является прямая, которую строим по двум точкам.

Если к > 0, то угол наклона прямой к положительному направлению от Ох острый.

Если к 2 квадратная функция. Графиком является парабола. Для построения графика используем таблицу значений.

в) обратная пропорциональность: y = k/x, графиком является гипербола В(f)=x0

г) y = D(f)=[0;+)

д) уравнение окружности

х 2 + у 2 = R 2
(х – а) 2 + (у – b) 2 = R 2
0(а; b)

III. Объяснение нового материала

В чем состоит графический метод решения систем уравнений? (В одной и той же системе координат строим графики уравнений.)

Координаты точки пересечения и будут являться решением данной системы.

IV. Закрепление темы

1) Решить систему уравнений:

в) б) а)

V. Работа на компьютере

№ 130 из учебника Виленкин:

а) б) в)

г) д) е)

а) б) № 162 (г,д)

Д/з на стр. 205 № 162 (а,б)

VI. Итог урока

Применение современной техники позволяет сделать процесс решения систем уравнений графическим методом значительно быстрее, но необходимо уметь строить графики функций.

Учебник: Н.Я. Виленкин Н.Я. Алгебра. 8. – М.: Просвещение, 2001.

Системы с нелинейными уравнениями

Нелинейные уравнения с двумя неизвестными
Системы из двух уравнений, одно из которых линейное
Однородные уравнения второй степени с двумя неизвестными
Системы из двух уравнений, одно из которых однородное
Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное
Примеры решения систем уравнений других видов

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A – некоторое множество пар чисел (x ; y) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

z = f (x , y) ,(1)

причем в записи (1) числа x и y называют аргументами функции , а число z – значением функции , соответствующим паре аргументов (x ; y) .

Определение 2 . Нелинейным уравнением с двумя неизвестными x и y называют уравнение вида

f (x , y) = 0 ,(2)

где f (x , y) – любая функция, отличная от функции

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

x 2 – 4xy + 6y 2 –
– 12 y +18 = 0 .
(3)

Решение . Преобразуем левую часть уравнения (3):

Таким образом, уравнение (3) можно переписать в виде

(x – 2y) 2 + 2(y – 3) 2 = 0 .(4)

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Пример 2 . Решить уравнение

sin (xy) = 2 .(5)

вытекает, что уравнение (5) решений не имеет.

Ответ : Решений нет.

Пример 3 . Решить уравнение

ln (x – y) = 0 .(6)

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

где y – любое число.

Системы из двух уравнений, одно из которых линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 4 . Решить систему уравнений

(7)

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Таким образом, решениями системы (7) являются две пары чисел

и

Ответ : (– 1 ; 9) , (9 ; – 1)

Однородные уравнения второй степени с двумя неизвестными

Определение 5 . Однородным уравнением второй степени с двумя неизвестными x и y называют уравнение вида

где a , b , c – заданные числа.

Пример 5 . Решить уравнение

3x 2 – 8xy + 5y 2 = 0 .(8)

Решение . Для каждого значения y рассмотрим уравнение (8) как квадратное уравнение относительно неизвестного x . Тогда дискриминант D квадратного уравнения (8) будет выражаться по формуле

откуда с помощью формулы для корней квадратного уравнения найдем корни уравнения (8):

Ответ . Решениями уравнения (8) являются все пары чисел вида

( y ; y) или

где y – любое число.

Следствие . Левую часть уравнения (8) можно разложить на множители

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

(9)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – y , из второго уравнения системы (9) получаем уравнение

корнями которого служат числа y1 = 2 , y2 = – 2 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 2) , (2 ; – 2) .

,

из второго уравнения системы (9) получаем уравнение

которое корней не имеет.

Ответ : (– 2 ; 2) , (2 ; – 2)

Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное

Пример 7 . Решить систему уравнений

(10)

Решение . Совершим над системой (10) следующие преобразования:

  • второе уравнение системы оставим без изменений;
  • к первому уравнению, умноженному на 5 , прибавим второе уравнение, умноженное на 3 , и запишем полученный результат вместо первого уравнения системы (10).

В результате система (10) преобразуется в равносильную ей систему (11), в которой первое уравнение является однородным уравнением:

(11)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – 5y , из второго уравнения системы (11) получаем уравнение

которое корней не имеет.

,

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y1 = 3 , y2 = – 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 3) , (2 ; – 3) .

Ответ : (– 2 ; 3) , (2 ; – 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

(13)

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

(14)

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

(15)

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

(16)

У системы (16) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы:

Следовательно, решениями системы (16) являются две пары чисел

Из формул (13) вытекает, что , поэтому первое решение должно быть отброшено. В случае u2 = 5, v2 = 2 из формул (15) находим значения x и y :

Определение 6 . Решением системы из двух уравнений с тремя неизвестными называют тройку чисел (x ; y ; z) , при подстановке которых в каждое уравнение системы получается верное равенство.

Пример 9 . Решить систему из двух уравнений с тремя неизвестными

(17)

Решение . У системы (17) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное z через неизвестные x и y и подставить это выражение во второе уравнение системы:

(18)

Перепишем второе уравнение системы (18) в другом виде:

Поскольку квадрат любого числа неотрицателен, то выполнение последнего равенства возможно лишь в случае x = 4, y = 4 .

Ответ : (4 ; 4 ; – 4)

Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы линейных уравнений» и нашим учебным пособием «Системы уравнений».

Графический метод решения системы уравнений

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы будем рассматривать решение систем двух уравнений с двумя переменными. Вначале рассмотрим графическое решение системы двух линейных уравнений, специфику совокупности их графиков. Далее решим несколько систем графическим методом.


источники:

http://www.resolventa.ru/spr/algebra/system1.htm

http://interneturok.ru/lesson/algebra/9-klass/sistemy-uravneniy/graficheskiy-metod-resheniya-sistemy-uravneniy