Решение системы уравнений 2 часть огэ по

Алгебра. Урок 4. Уравнения, системы уравнений

Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Уравнения”.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Линейные уравнения

Линейные уравнения

Линейное уравнение – уравнение вида a x = b , где x – переменная, a и b некоторые числа, причем a ≠ 0 .

Примеры линейных уравнений:

  1. 3 x = 2
  1. 2 7 x = − 5

Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.

Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .

Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.

Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного линейного уравнения: x = b a .

Примеры решения линейных уравнений:

  1. 2 x + 1 = 2 ( x − 3 ) + 8

Это линейное уравнение, так как переменная стоит в первое степени.

Попробуем преобразовать его к виду a x = b :

Для начала раскроем скобки:

2 x + 1 = 4 x − 6 + 8

В левую часть переносятся все слагаемые с x , в правую – числа:

Теперь поделим левую и правую часть на число ( -2 ) :

− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.

Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

x 2 + 3 x − 8 = x − 1

Это уравнение не является линейным уравнением.

Особые случаи (в 4 задании ОГЭ они не встречались, но знать их полезно)

  1. 2 x − 4 = 2 ( x − 2 )

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 2 x = − 4 + 4

И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом. Запишем ответ к данном линейному уравнению.

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 4 = 2 x − 16

2 x − 2 x = − 16 + 4

В результате преобразований x сократился, но в итоге получилось неверное равенство, так как . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным. Запишем ответ к данному линейному уравнению.

Квадратные уравнения

Квадратное уравнение – уравнение вида a x 2 + b x + c = 0, где x – переменная, a , b и c – некоторые числа, причем a ≠ 0 .

Алгоритм решения квадратного уравнения:

  1. Раскрыть скобки, перенести все слагаемые в левую часть, чтобы уравнение приобрело вид: a x 2 + b x + c = 0
  2. Выписать, чему равны в числах коэффициенты: a = … b = … c = …
  3. Вычислить дискриминант по формуле: D = b 2 − 4 a c
  4. Если D > 0 , будет два различных корня, которые находятся по формуле: x 1,2 = − b ± D 2 a
  5. Если D = 0, будет один корень, который находится по формуле: x = − b 2 a
  6. Если D 0, решений нет: x ∈ ∅

Примеры решения квадратного уравнения:

  1. − x 2 + 6 x + 7 = 0

a = − 1, b = 6, c = 7

D = b 2 − 4 a c = 6 2 − 4 ⋅ ( − 1 ) ⋅ 7 = 36 + 28 = 64

D > 0 – будет два различных корня:

x 1,2 = − b ± D 2 a = − 6 ± 64 2 ⋅ ( − 1 ) = − 6 ± 8 − 2 = [ − 6 + 8 − 2 = 2 − 2 = − 1 − 6 − 8 − 2 = − 14 − 2 = 7

Ответ: x 1 = − 1, x 2 = 7

a = − 1, b = 4, c = − 4

D = b 2 − 4 a c = 4 2 − 4 ⋅ ( − 1 ) ⋅ ( − 4 ) = 16 − 16 = 0

D = 0 – будет один корень:

x = − b 2 a = − 4 2 ⋅ ( − 1 ) = − 4 − 2 = 2

a = 2, b = − 7, c = 10

D = b 2 − 4 a c = ( − 7 ) 2 − 4 ⋅ 2 ⋅ 10 = 49 − 80 = − 31

D 0 – решений нет.

Также существуют неполные квадратные уравнения (это квадратные уравнения, у которых либо b = 0, либо с = 0, либо b = с = 0 ). Смотрите видео, как решать такие квадратные уравнения!

Разложение квадратного трехчлена на множители

Квадратный трехчлен можно разложить на множители следующим образом:

a x 2 + b x + c = a ⋅ ( x − x 1 ) ⋅ ( x − x 2 )

где a – число, коэффициент перед старшим коэффициентом,

x – переменная (то есть буква),

x 1 и x 2 – числа, корни квадратного уравнения a x 2 + b x + c = 0 , которые найдены через дискриминант.

Если квадратное уравнение имеет только один корень , то разложение выглядит так:

a x 2 + b x + c = a ⋅ ( x − x 0 ) 2

Примеры разложения квадратного трехчлена на множители:

  1. − x 2 + 6 x + 7 = 0 ⇒ x 1 = − 1, x 2 = 7

− x 2 + 6 x + 7 = ( − 1 ) ⋅ ( x − ( − 1 ) ) ( x − 7 ) = − ( x + 1 ) ( x − 7 ) = ( x + 1 ) ( 7 − x )

  1. − x 2 + 4 x − 4 = 0 ; ⇒ x 0 = 2

− x 2 + 4 x − 4 = ( − 1 ) ⋅ ( x − 2 ) 2 = − ( x − 2 ) 2

Если квадратный трехчлен является неполным, ( ( b = 0 или c = 0 ) то его можно разложить на множители следующими способами:

  • c = 0 ⇒ a x 2 + b x = x ( a x + b )
  • b = 0 ⇒ применить формулу сокращенного умножения для разности квадратов.

Дробно рациональные уравнения

Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

ОДЗ – область допустимых значений переменной.

В выражении вида f ( x ) g ( x ) = 0

ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

Алгоритм решения дробно рационального уравнения:

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .
  2. Выписать ОДЗ: g ( x ) ≠ 0.
  3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
  4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Пример решения дробного рационального уравнения:

Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

Решение:

Будем действовать в соответствии с алгоритмом.

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .

Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

x 2 − 4 2 − x − 1 \ 2 − x = 0

x 2 − 4 2 − x − 2 − x 2 − x = 0

x 2 − 4 − ( 2 − x ) 2 − x = 0

x 2 − 4 − 2 + x 2 − x = 0

x 2 + x − 6 2 − x = 0

Первый шаг алгоритма выполнен успешно.

Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

  1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

a = 1, b = 1, c = − 6

D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

D > 0 – будет два различных корня.

x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

  1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Корни, полученные на предыдущем шаге:

Значит, в ответ идет только один корень, x = − 3.

Системы уравнений

Системой уравнений называют два уравнения с двумя неизвестными (как правило, неизвестные обозначаются x и y ) , которые объединены в общую систему фигурной скобкой.

Пример системы уравнений

Решить систему уравнений – найти пару чисел x и y , которые при подстановке в систему уравнений образуют верное равенство в обоих уравнениях системы.

Существует два метода решений систем линейных уравнений:

  1. Метод подстановки.
  2. Метод сложения.

Алгоритм решения системы уравнений методом подстановки:

  1. Выразить из любого уравнения одну переменную через другую.
  2. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  3. Решить уравнение с одной неизвестной.
  4. Найти оставшуюся неизвестную.

Решить систему уравнений методом подстановки

Решение:

  1. Выразить из любого уравнения одну переменную через другую.
  1. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  1. Решить уравнение с одной неизвестной.

3 ( 8 − 2 y ) − y = − 4

y = − 28 − 7 = 28 7 = 4

  1. Найти оставшуюся неизвестную.

x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0

Ответ можно записать одним из трех способов:

Решение системы уравнений методом сложения.

Метод сложения основывается на следующем свойстве:

Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.

Решить систему уравнений методом сложения

Давайте избавимся в данном примере от переменной x . Суть метода состоит в том, чтобы в первом и во втором уравнении перед переменной x стояли противоположные коэффициенты. Во втором уравнении перед x стоит коэффициент 3 . Для того, чтобы метод сложения сработал, надо чтобы перед переменной x оказался коэффициент ( − 3 ) . Для этого домножим левую и правую часть первого уравнения на ( − 3 ) .

Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.

( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )

− 3 x − 6 y + 3 x − y = − 24 − 4

y = − 28 − 7 = 28 7 = 4

Осталось найти переменную x . Для этого подставим y = 4 в любое из двух уравнений системы. Например, в первое.

Ответ можно записать одним из трех способов:

Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.

ОГЭ 2018. Алгебра. 2 часть, задание №21 с решением.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Задание 21. Решите уравнение

Решение. 1. Найдем один из корней кубического уравнения. Для этого рассмотрим числа 1; -1 и 3; -3 (наименьшие делители свободного члена кубического уравнения). Путем подстановки каждого из этих числе вместо x, проверим, является ли один из них корнем (для этого уравнение должно быть равно 0):

— для x=1: — не подходит;

— для x=-1: — не подходит;

— для x= 3: — подходит.

2. Теперь выполним деление кубического многочлена на x-3, воспользовавшись схемой Горнера, имеем:

3. Получаем квадратное уравнение для вычисления оставшихся двух корней:

х 1 = -3, х 2 = -4

Получили три корня 3; -3; -4. Ответ: 3; -3; -4.

Задание 21. Решите уравнение

1. Найдем один из корней кубического уравнения. Для этого рассмотрим числа 1; -1 и 2; -2 (делители свободного члена кубического уравнения). Путем подстановки каждого из этих чисел вместо x, проверим, является ли один из них корнем (для этого уравнение должно быть равно 0):

— для x=1: — подходит (один из корней).

2. Теперь выполним деление кубического многочлена на x-1, воспользовавшись схемой Горнера, имеем:

3. Получаем квадратное уравнение для вычисления оставшихся двух корней:

х 1 = -1, х 2 = -2 Получили три корня -2; -1; 1.

Задание 21. Решите уравнение

Решение. 1. Найдем один из корней кубического уравнения. Для этого рассмотрим числа 1; -1 и 3; -3 (делители свободного члена кубического уравнения). Путем подстановки каждого из этих чисел вместо x, проверим, является ли один из них корнем (для этого уравнение должно быть равно 0):

— для x=1: — не подходит;

— для x=-1: — не подходит;

— для x=3: — подходит (один из корней).

2. Теперь выполним деление кубического многочлена на x-3, воспользовавшись схемой Горнера, имеем:

3. Получаем квадратное уравнение для вычисления оставшихся двух корней:

х 1 = -3, х 2 = -5. Получили три корня -5; -3; 3. Ответ: -5; -3; 3.

Задание 21. Решите уравнение

1. Извлечем кубический корень из левой и правой частей уравнения, получим:

2. Решаем квадратное уравнение, получаем два корня:

Задание 21. Решите уравнение

Возьмем корень третьей степени из обеих частей уравнения, получим:

Решим квадратное уравнение:

Задание 21. Решите уравнение

Возьмем корень кубической степени от обеих частей уравнения, получим:

Решаем квадратное уравнение, имеем два корня:

Задание 21. Решите уравнение .

Решение. 1. Запишем ОДЗ уравнения:

.

2. Упросим уравнение и найдем его корни:

Решаем квадратное уравнение, получаем:

х1 = 6, х2 = -3

Из двух корней только один x=-3 удовлетворяет ОДЗ. Ответ: -3.

Задание 21. Решите уравнение .

1. Запишем ОДЗ уравнения:

.

2. Упростим уравнение, получим:

Решаем квадратное уравнение, получаем корни:

Только один корень x=-4 удовлетворяет ОДЗ.

Задание 21. Решите уравнение x^3 + 6x^2 = 4x + 24.

Решение. Упростим выражение, приведем его к виду:

Данное выражение равно 0, если хотя бы один из сомножителей равен 0, то есть имеем два уравнения:

и

Получаем три корня: -6; -2; 2.

Задание 21. Решите уравнение x^3+4x^2 = 9x +36.

Решение. Сначала преобразуем выражение: в левой части вынесем за скобку, а в правой части вынесем 9 за скобку, получим:

Последнее выражение будет равно нулю, если хотя бы один из множителей равен нулю. То есть, имеем два уравнения:

и

Задание 21. Сократите дробь .

Заметим, что число , а число . Учитывая это, исходное выражение примет вид:

Задание 21. Сократите дробь .

Учитывая, что и , получим:

Задание 21. Решите систему уравнений

Решение. Для решения данной системы можно вычесть второе уравнение из первого, это позволит избавиться от переменной y, получим:

Решаем квадратное уравнение через дискриминант, имеем два корня:

Для каждого из найденных корней найдем соответствующее значение y, подставив во второе уравнение:

и Ответ: (1;-4), (1,8; 0).

Задание 21. Решите систему уравнений

Решение. Так как оба уравнения равны одному и тому же значению y, то их можно приравнять, получим:

, откуда

Полученное выражение будет равно 0, если

или

Найдем теперь значения y для каждого x, имеем:

и

Задание 21. Решите систему уравнений

Решение. Разделим первое уравнение на 2, а второе – на 4, получим:

Видим, что у обоих уравнений есть слагаемое . Чтобы избавиться от него, вычтем из первого уравнения второе:

Теперь вычислим значение y при x=12, подставив x в первое уравнение, имеем:

следовательно, .

Таким образом, имеем решение (2, -2), (2,2). Ответ: (2, -2), (2,2).

Задание 21. Решите систему уравнений

Решение. Разделим второе уравнение на 2, получим систему

и вычтем из первого уравнения второе:

Для значения x=2 найдем соответствующие значения y, подставив x в первое уравнение:

То есть имеем два решения: (2;-3) и (2;3).

Задание 21. Решите уравнение

Решение. Преобразуем уравнение, приведем его к следующему виду:

Полученное выражение будет равно 0, если или, если

Таким образом, получили следующие корни: -4; -3; 2. Ответ: -4; -3; 2.

Задание 21. Решите уравнение .

Решение. Упростим выражение, перепишем его в следующем виде:

Полученное выражение будет равно 0, если или когда

Получили три корня: -5; -4; -3.

Задание 21. Решите систему уравнений

Сложим оба уравнения, получим:

Для найденных корней x вычислим из первой формулы соответствующие значения y, имеем:

— для : ;

— для : .

Получили два решения: (-1;5), (1;5).

Задание 21. Решите систему уравнений

Сложим оба уравнения, получим:

Вычислим соответствующие значения y при x=-2 и 2, подставив эти значения в первую формулу системы:

— при x=-2: ;

— при x=2: .

Имеем следующие решения: (-2; 3) и (2; 3).

Задание 21. Решите неравенство .

Решение. Можно заметить, что данное неравенство будет больше либо равно 0, если

. Преобразуем данное выражение, перепишем его в виде:

Из последнего выражения имеем две точки, делящие числовую ось:

и .

Ответ: .

Задание 21. Решите неравенство .

Решение. Из неравенства можно видеть, что оно будет соблюдаться, если

.

Перепишем его в следующем виде:

Последнее выражение дает две точки, делящие числовую ось:

и

.

Ответ: .

Задание 21. Решите неравенство

Сложим оба уравнения системы, избавимся таким образом от переменной y, получим:

Теперь, для каждого из найденных x, вычислим y из первого уравнения:

Получаем решения: (-1; 8), (1; 8).

Задание 21. Решите неравенство

Сложим оба уравнения системы, избавимся от переменной y, получим:

Для каждого найденного корня x вычислим соответствующее значение y из первого уравнения, имеем:

То есть получили следующие решения: (-2; 1), (2; 1).

Задание 21. Найдите значение выражения 28a-7b+40, если .

Приведем выражение к виду , получим:

Ответ: 5.

Задание 21. Найдите значение выражения 33a-23b+71, если .

Приведем выражение к выражению , получим:

Задание 21. Решите уравнение .

Решение. Учитывая, что слагаемые в уравнении всегда больше либо равны 0, то уравнение будет равно нулю, если каждое из слагаемых равно нулю. Соответственно, получаем следующую систему уравнений:

Из первого уравнения имеем корни

Из второго уравнения, получаем следующие два корня:

Из полученных значений видно, что оба уравнения одновременно будут принимать значение 0 при x=-5.

Задание 21. Решите уравнение .

Решение. Любое число в квадрате всегда больше 0, следовательно, уравнение будет равно 0, если оба слагаемых равны 0. Это условие можно записать в виде следующей системы:

Из первого уравнения получаем два корня:

Из второго уравнения, имеем корни:

Общий корень, при котором оба уравнения переходят в 0, равен -4. Ответ: -4.

Задание 21. Решите уравнение .

Упростим уравнение, приведем его к следующему виду:

Данное уравнение будет равно 0, если

Решаем первое квадратное уравнение, получаем корни:

Оба корня удовлетворяют неравенству , следовательно, они являются решениями уравнения.

Ответ: .

Задание 21. Решите уравнение .

Преобразуем уравнение к виду

Данное уравнение будет равно 0, если

Найдем корни уравнения из квадратного уравнения:

Оба корня не равны 0, следовательно, являются решениями уравнения.

Ответ: .

Задание 21. Решите уравнение .

Сначала преобразуем выражение, получим:

Последнее выражение показывает, что уравнение будет равно 0, если хотя бы один из множителей будет равен 0, то есть имеем 3 уравнения и 3 корня:

2 часть ОГЭ по математике

Во вторую часть ОГЭ по математике* входят 6 заданий на проверку углубленных знаний по алгебре (с 21 по 23 задание) и геометрии (с 24 по 26 задания). Решить их реально, главное прорешать все виды заданий!

Обратите внимание на экзамене на оформление задач и конкретный ответ на поставленный вопрос в условии задачи.

За каждое верное решение задания из второй части ОГЭ, вы сможете получить 2 ценных балла. Не упускайте возможности набрать высокие баллы!

Задания 21 (C1). Алгебраические выражения, уравнения, неравенства и их системы:

21.5. Система уравнений >>> и здесь >>>.

Задания 22 (C2). Текстовые задачи:

Задания 23 (C3). Функции и их свойства. Графики функций:

Задания 24 (C4). Геометрическая задача на вычисление:

Задания 25 (C5). Геометрическая задача на доказательство:

Задания 26 (C6). Геометрическая задача повышенной сложности:

*Порядок заданий представлен по состоянию на 2016-2017 учебный год


источники:

http://infourok.ru/oge-algebra-chast-zadanie-s-resheniem-2445186.html

http://vekgivi.ru/oge_po_matematike/2-oge-po-matematike/