Решение системы уравнений курсовая работа

Курсовая работа: Разработка программы решения системы линейных уравнений

Дальневосточная академия государственной службы

Факультет государственного и муниципального управления

по курсу: Информатика

Разработка программы решения системы линейных уравнений

1 курса 3 годичной

заочной формы обучения

Воищев Алексей Юрьевич

г. Хабаровск 2005

1. Описание математических методов решения систем линейных уравнений

1.1 Метод Гаусса

1.2 Матричный метод

1.3 Вычисление определителей второго и третьего порядка

2. Язык программирования Паскаль

2.1 Структура программы

2.2 Описание переменных

2.3 Основные конструкции языка

2.4 Структуры данных

2.4 Процедуры и функции

3. Описание программы

3.1 Работа программы

3.2 Блок-схема программы

Список используемых источников и литературы

Введение

Последние десятилетия характеризуются бурным развитием вычислительной техники. Расширяются области применения вычислительных машин и совершенствуются методы их использования. Созданы универсальные языки программирования и разработаны мощные операционные системы.

Системы линейных уравнений появляются почти в каждой области прикладной математики. В некоторых случаях эти системы уравнений непосредственно составляют ту задачу, которую необходимо решать, в других случаях задача сводится к такой системе.

Чтобы быстро справится с решением системы линейных уравнений, можно воспользоваться средствами вычислительной техники — составить программу на языке программирования.

1 . Описание математических методов решения систем линейных уравнений

1.1 Метод Гаусса

Идея метода Гаусса состоит в последовательном исключении неизвестных. Алгоритм решения системы уравнений этим методом проследим на примере.

Пример 1.

Выбирается ведущее уравнение с коэффициентом при х1 , равным 1. В нашем примере ведущим уравнением будет второе. Систему лучше переписать, поставив это уравнение на первое место:

Умножаем первое уравнение на 6 и вычитаем из полученного второе, чтобы исключить из второго неизвестное х1 . Первое уравнение записываем, а на место второго — результат вычитания.

Затем первое уравнение умножим на 3 и складываем с третьим уравнением. Тогда получаем систему

Или

первое уравнение переписываем без изменения, а второе умножаем на 7 и вычитаем из него третье уравнение, умноженное на 15, чтобы избавиться от х2 в третьем уравнении. При этом второе записываем без изменения, на месте третьего — результат вычитания. Тогда

Из третьего следует х3 =-3, подставим его во второе, получим х2 = — 2. Далее подставим найденные х2 и х3 в первое уравнение, получим х1 = 1.

Примечание: если система уравнений не содержит уравнения с коэффициентом 1 при х1 , тогда исключение х1 из второго и третьего достигается умножением сначала первого на коэффициент второго, а второго на коэффициент первого. Затем умножаем первое на коэффициент третьего, а третье на коэффициент первого. Таким образом при вычитании исключаем х1 .

1.2 Матричный метод

Запишем систему линейных 3 уравнений с 3 неизвестными

Составим матрицу из коэффициентов при неизвестных

А =

Введем в рассмотрение матрицы — столбцы для неизвестных и свободных членов:

Х = ; В = .

Тогда систему (2) можно переписать в матричной форме

Умножив это уравнение на слева, получим , откуда =или

Следовательно, матрица — решение Х находится как произведение на В .

Пример 2. Решить систему уравнений матричным методом

Решение: определитель матрицы

А=

∆=-1, значит, существует обратная матрица .

Матрица — столбец при неизвестных:

Х =

Матрица — столбец из свободных членов:

В =

Тогда решение запишется в виде

==

1.3 Вычисление определителей второго и третьего порядка

Число (а 11 а 22а 12 а 21 ) называется определителем второго порядка и обозначается символом

Определитель второго порядка содержит две строки и два столбца. Числа а 11 , а 12 , а 21 , а 22 называются элементами определителя. Диагональ определителя, на которой расположены числа а 11 , а 22 — главная, а элементы а 12 , а 21 составляют побочную диагональ.

Определитель 3-го порядка содержит три строки и три столбца:

Для вычисления определителя третьего порядка существует несколько способов.

Рассмотрим метод вычисления определителя разложением по элементам первой строки.

Введем понятие минора и алгебраического дополнения.

Минором некоторого элемента определителя называется определитель, полученный из данного вычеркиванием той строки и того столбца в которых этот элемент расположен. Обозначается Мij ( i — номер строки, j — номер столбца).

Например, минором элемента а12 является определитель

Алгебраическим дополнением данного элемента определителя называется его минор, умноженный на (-1) i+ j . Алгебраические дополнения обозначаются буквами Аij, и тогда Аy = (-1) i+ j My .

Определитель вычисляется так:

=.

Так же можно разложить определитель по любой строке или столбцу.

Изложенный метод применим к вычислению определителей 4-го и т.д. порядков.

Пример3. Вычислить определитель разложением по элементам первой строки

Решение: Элементы первой строки

А11 = (-1) 1+1 . М11 ==4+1=5.

М11 получили, вычеркнув первую строку и первый столбец.

А12 = (-1) 1+2 . М12 = — = — (8+3) = — 11.

М12 получили, вычеркнув первую строку и второй столбец.

А13 = (-1) 1+3 . М13 = = 2-3 = — 1.

М13 получили, вычеркнув первую строку и третий столбец.

= 1.5+2. (-11) — 2. (-1) = — 15

2. Язык программирования Паскаль

2.1 Структура программы

Язык Паскаль, начиная с момента своего создания Н. Виртом в 1971г., играет особую роль м в практическом программировании, и в его обучении. С непревзойденной четкостью в нем реализованы принципы структурного программирования. Трансляторы для программ, написанных на Паскале, разработаны для различных компьютеров и в настоящее время имеют множество разновидностей. Они являются компиляторами, обрабатывающими разработанные программистами тексты программ.

Существует много версий языка Паскаль. Различия между ними порой весьма велики. Так, базовая версия Вирта имеет многократно меньше возможностей, чем версия Турбо-Паскаль 7.0. (первая, фактически — язык для обучения будущих программистов, а вторая — орудие профессиональных разработчиков прикладного программного обеспечения) Тем не менее, это версии одного языка.

Любая Паскаль — программа является текстовым файлом с собственным именем и с расширением. pas. Паскаль — программа имеет вид последовательности символов латинских и русских букв, арабских цифр, знаков операций, скобок, знаков препинания и некоторых дополнительных символов. В нем можно выделить описания данных и операторы, описывающие действия, которые надо выполнить машине над этими данными.

Схематически программа представляется в виде последовательности восьми разделов:

описание внешних модулей, процедур и функций;

описание типов переменных;

описание функций и процедур;

Каждый раздел начинается со служебного слова, назначение которого зафиксировано в Паскале так, что его нельзя употреблять для других целей. Так например, описание заголовка начинается со служебного слова program, описание констант -const, описание переменных — var, раздел операторов начинается с begin. Программа заканчивается служебным словом end, после которого ставится точка. Описания величин и операторы друг от друга отделяются знаком «точка с запятой».

2.2 Описание переменных

Для обозначения величин используются имена. Они состоят из латинских букв и цифр, причем первым символом должна быть буква.

Постоянные величины (константы) чаще всего бывают числовыми или символьными. Значения символьных констант заключаются в апострофы.

Постоянные величины описываются в разделе констант по схеме:

Данные, обрабатываемые программой, могут быть различных типов (числовые, символьные, строки, массивы и т.д.). Тип определяет область допустимых значений, а также операции и функции, применяемые к величинам этого типа. В Паскале имеется несколько встроенных простых типов со стандартными именами.

Группа типов, значения каждого из которых можно перечислить в некотором списке — скалярные типы. Для них определен порядковая функция ord (x) — номер значения х в списке; функция pred (x) -значение в списке, предшествующее х, и succ (x) — значение в списке, следующее за х.

Упорядоченный тип — это тип, значения которого упорядочены в обычном смысле.

Переменные описываются в раздел описания переменных по схеме:

Имена в списке разделяются запятой. В этом разделе может быть описано несколько переменных разного типа, например:

Var a,b,c,: real; k, i: integer; p: Boolean;

Над целыми величинами (тип integer) определены арифметические операции: * (умножение), div (деление нацело), mod (вычисление остатка от деления), +, — (сложение и вычитание); операции перечислены в порядке старшинства. Целый результат дают некоторые стандартные функции (аргумент заключается в круглые скобки):

-абсолютная величина целого хж

квадрат значения х;

целая часть вещественной величины х;

целое число, полученное из вещественного ч по правилу округления;

случайное целое число из интервала от 0 до х

Над вещественными величинами определены операции: *, +, -, /, а также стандартные функции, при вещественном или целом аргументе: abs (x), sqr (x), sin (x), cos (x), ln (x), sqrt (x) — квадратный корень из х, int (x) — целая часть из х, random — случайное число от 0 до 1. Указанные операции и функции дают вещественный результат.

Множество всех символов образуют символьные величины (тип char), которые являются упорядоченными.

Выражения — это конструкции, задающие правила вычисления значений переменных. В общем случае выражения строятся из переменных, констант, функций с помощью операций и скобок.

Эта роль выражения отражена в основном операторе языка — операторе присваивания. Он имеет следующий вид:

Тип переменной и тип выражения должны быть согласованы (величины принадлежат к одному и тому же типу).

В Паскале можно вводить с клавиатуры числовые и символьные данные. Имеются две встроенные процедуры (подпрограммы) ввода:

Процедура readln отличается от read только тем, что при завершении ввода курсор перемещается в начало строки.

Программа на Паскале может выводить на экран или на принтер значения числовых или символьных выражений. Имеются две процедуры вывода на экран:

Процедура write (x1,x2,x3,…xn) печатает на экран значения выражения из списка х1, х2,…хn. Для вывода на принтер используются те же процедуры с добавлением служебного слова lst перед списком выражений:

Пример: write (lst,’ нет решений‘);

2.3 Основные конструкции языка

Паскаль — это язык структурного программирования. Это значит, что программа должна выражать свои мысли очень дисциплинированно, с использованием малого числа четко оговоренных конструкций, используя как чередование их, так и вложения друг в друга. Не рекомендуется (хотя и возможно) использовать оператор перехода goto.

Реализация последовательности действий (т.е. структуры следования) выполняется с помощью составного оператора:

Раздел операторов в программе всегда является составным оператором. Служебные слова begin и end часто называют операторными скобками.

Для реализации развилки в Паскале предусмотрены два оператора: условный оператор и оператор варианта (выбора). Они предназначены для выделения из составляющих их операторов одного, который и выполняется.

Структура и действие условного оператора таковы:

Условный оператор может быть неполным, т.е. не содержать часть “else «. В этом случае, если значение логического выражения равно false, условный оператор не вызывает никаких действий.

Оператор варианта имеет следующую форму:

Выражение, стоящее между служебными словами case и of, должно иметь значение ординального типа. Любой список констант может состоять из одной константы.

Оператор варианта вычисляет значение выражения, записанного после case. Если его значение совпадает с одной из констант в некотором списке, то выполняется оператор, стоящий после этого списка. Если значение выражения не совпало ни с одной константой во всех вариантах, то оператор варианта ничего не делает.

Для реализации циклов в Паскале имеются три оператора. Если число повторений известно заранее, то удобно воспользоваться оператором цикла с параметром. В других случаях следует использовать операторы цикла с предусловием (цикл «пока») или с постусловием (цикл «до»).

Цикл с предусловием является наиболее мощным в Паскале. Другие операторы цикла можно выразить через него. Его форма такова:

Действие: вычисляется значение логического выражения. Если оно равно true, то выполняется оператор, после чего снова вычисляется значение логического выражения, в противном случае действие заканчивается.

Оператор цикла с постусловием имеет форму:

Действие: выполняется последовательность операторов. Далее вычисляется значение логического выражения. Если оно равно true, то действие заканчивается, в противном случае снова выполняется последовательность операторов цикла и т.д.

Оператор цикла с параметром предусматривает повторное выполнение некоторого оператора с одновременным изменением по правилу арифметической прогрессии значения управляющей переменной (параметра) этого цикла. Оператор цикла с параметром имеет две формы.

Параметр, выражение 1, выражение 2 должны быть одного ординального типа. Параметр в этом цикле возрастает. Действие эквивалентно действию следующего составного оператора:

Если в этом описании отношение =, а функцию succ на pred, то параметр в цикле будет убывать, в этом случае цикл с параметром принимает форму 2.

For : = downto do

2.4 Структуры данных

В Паскале кроме простых типов данных: real, integer, boolean, byte, char, программист по своему желанию может определить новый тип путем перечисления его элементов — перечисляемый тип, который относится к простым ординальным типам.

Описание перечисляемого типа выполняется по схеме:

Например, type operator = (plus, minus, multi, divide);

Интервальный тип — это подмножество другого уже определенного ординального типа, называемого базовым. Интервал можно задать в разделе типов указанием наименьшего и наибольшего значений, входящих в него и разделяющихся двумя последовательными точками, например:

Type days = (mon, tue, wed, thu, fri, sat, sun);

Workdays= mon. fri;

Операции и функции — те же, что и для базового типа. Использование интервальных типов в программе позволяет экономить память и проводить во время выполнения программы контроль присваивания.

Естественно и часто очень удобно группировать однотипные данные в последовательности — массивы, строки символов, объединять разнотипные данные в одном и том же объекте в виде записей. Значительное удобство представляются пользователю в Паскале при организации однотипных величин в виде множества с соответствующим набором операций: объединения, пересечения и т.д. Последовательность однотипных величин переменной длины можно представить в Паскале в виде файла данных и хранить на внешних носителях, используя его в разных программах.

Массив -это последовательность, состоящая из фиксированного числа однотипных элементов. Все элементы массива имеют общее имя и различаются индексами. Индексы можно вычислять, их тип должен быть ординальным. В описании массива используются служебные слова array и of. В описании массива указывается тип его элементов и типы их индексов.

2.4 Процедуры и функции

В Паскале подпрограммы называются процедурами и функциями и описываются в разделе с тем же названием.

Все имена, описанные в программе до процедуры, действуют во всей программе и в любой ее подпрограмме. Они называются глобальными, в отличии от локальных имен, описанных в процедуре и действующих лишь в ней.

Данные для обработки могут передаваться процедуре через глобальные имена или через аргументы процедуры. В процедуре каждый аргумент имеет свое имя — формальный параметр, описываемый в заголовке процедуры по схеме

Описание формальных параметров может иметь вид

Оператор вызова процедуры имеет вид

Указанные выражения называются фактическими параметрами. Их список должен точно соответствовать списку описаний формальных параметров процедуры. Во время вызова процедуры каждому параметру-значению присваивается значение соответствующего фактического параметра и поэтому их используют для передачи входных данных. Параметры — переменные используются для представления результатов процедуры.

Функция — это подпрограмма, определяющая единственное скалярное, вещественное или строковое значение. Отличия подпрограммы — функции от процедуры:

заголовок функции начинается со служебного слова function и заканчивается указанием типа значения функции:

function (список описаний формальных параметров): ;

раздел операторов функции должен содержать хотя бы один оператор присваивания имени функции;

обращение к функции — не оператор, а выражение вида:

3. Описание программы

3.1 Работа программы

Для решения систем линейных уравнений методом Гаусса и матричным методом создана программа на языке Паскаль. Программа запрашивает исходные данные (рис.1):

матрицу коэффициентов при неизвестных х;

столбец свободных членов

способ решения системы линейных уравнений — вариант 1 или 2.

Рисунок 3.1 Ввод исходных данных

В зависимости от выбранного вариант в программе происходит решение системы уравнений методом Гаусса (рис.2) или матричным методом (рис.3) с выдачей на экран результатов:

Рисунок 3.2 Результаты расчетов системы линейных уравнений методом Гаусса.

Рисунок 3.3 Результаты расчетов системы линейных уравнений матричным методом.

Программа состоит из 7 подпрограмм — 6 процедур и одной функции:

процедура Gauss обеспечивает решение системы линейных уравнений по методу Гаусса;

процедура matrica обеспечивает решение системы линейных уравнений матричным методом;

процедура PrintMatr2 предназначена для выдачи на экран исходной и обратной матрицы;

процедура MultString предназначена для умножения строк матрицы на число r;

процедура AddStrings прибавляет к i1-ой строке матрицы i2-ю, умноженную на число r;

процедура MultMatr предназначена для умножения матриц.

Функция Sign используется для изменения знака на противоположный при вычислении обратной матрицы.

Программа настроена на решение системы 3-х линейных уравнений с тремя неизвестными. Чтобы решить систему из 2-х уравнений с 2-мя неизвестными необходимо в программе изменить значение константы N с N=3 на N =2 (рис.4).

Рисунок 3.4. Фрагмент программы с описанием констант и переменных.

3.2 Блок-схема программы

Название: Разработка программы решения системы линейных уравнений
Раздел: Рефераты по информатике, программированию
Тип: курсовая работа Добавлен 22:38:32 18 июля 2010 Похожие работы
Просмотров: 1002 Комментариев: 21 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать

Заключение

В данной курсовой работе рассмотрены математические методы решения систем линейных уравнений: матричный метод и метод Гаусса, приводятся основные конструкции языка Паскаль. Рассмотренные теоретические вопросы дают возможность создания программы на Паскале для решения систем линейных уравнений. В курсовой работе приводится текст данной программы, рассматривается структура программы, анализируются все подпрограммы. Данная программа может быть использована в различных областях, где требуется решение систем линейных уравнений.

Список используемых источников и литературы

1. А.В. Могилев, Н.И. Пак, Е.К. Хеннер «Информатика», Москва, ACADEMA, 2000 г.

2. « Турбо Паскаль 7.0″, Киев, Торгово-издательское бюро BHV, 1997г.

3. С.А. Немнюгин, «Турбо ПАСКАЛЬ», Практикум, Питер, 2002г.

Приложение

«Решение систем линейных уравнений матричным способом и методом Гаусса»

type matr=array [1. n,1. n] of real;

mas=array [1. n] of real;

procedure PrintMatr2 (m,m1: matr; n,nz,nd: integer);

for i: =1 to n do

if (i=1) then write (np: 2,’: ‘)

for j: =1 to n do

write (m [i,j]: nz: nd); write (‘ ‘);

for j: =1 to n do

write (m1 [i,j]: nz: nd);

procedure MultString (var a,b: matr; i1: integer; r: real);

for j: =1 to n do

procedure AddStrings (var а,b: matr; i1, i2: integer; r: real);

for j: =1 to n do

a [i1,j]: =a [i1,j] +r*a [i2,j] ;

b [i1,j]: =b [i1,j] +r*b [i2,j] ;

procedure MultMatr (a,b: matr; var c: matr);

for i: =1 to n do

for j: =1 to n do

for k: =1 to n do

function sign (r: real): shortint;

if (r>=0) then sign: =1 else sign: =-1;

procedure GetMatr (a: matr; var b: matr; m, i,j: integer);

var ki,kj,di,dj: integer;

for ki: =1 to m-1 do

if (ki=i) then di: =1;

for kj: =1 to m-1 do

if (kj=j) then dj: =1;

b [ki,kj]: =a [ki+di,kj+dj] ;

procedure gauss (a: matr; b: mas; var x: mas; n: integer);

For k: =1 to N-1 do

For i: =k+1 to n do

For j: =k+1 to N do

writeln (‘Вывод результатов решения системы уравнений методом Гаусса’);

writeln (‘x [‘,n,’] =’,x [n]: 6: 2);

for i: = (n-1) downto 1 do

For j: =i+1 to n do

x [i]: = (b [i] +s) /a [i, i] ;

writeln (‘x [‘, i,’] =’,x [i]: 6: 2);

procedure matrica (a: matr; y: mas; n: integer);

for i: =1 to n do

for j: =1 to n do z [i,j]: =0;

for i: =1 to n do

for j: =1 to n do

for i: =1 to n do

взятую со знаком i-того элемента j-ой строки. Таким образом,

на месте элементова a [i, i] возникает сумма модулей элементов i-того

столбца (ниже i-ой строки) взятая со знаком бывшего элемента a [i, i],

равенство нулю которой говорит о несуществовании обратной матрицы >

for j: =i+1 to n do

AddStrings (a,z, i,j,sign (a [i, i]) *sign (a [j, i]));

if (abs (a [i, i]) >eps) then

MultString (a,z, i,1/a [i, i]);

for j: =i+1 to n do

AddStrings (a,z,j, i,-a [j, i]);

writeln (‘Обратной матрицы не существует. ‘);

if (a [n,n] >eps) then

for i: =n downto 1 do

for j: =1 to i-1 do

AddStrings (a,z,j, i,-a [j, i]);

else writeln (‘Обратной матрицы не существует. ‘);

writeln (‘Начальная матрица, обратная к ней матрица: ‘);

for i: =1 to n do s [i]: =0;

for i: =1 to n do

for j: =1 to n do

s [i]: =s [i] +z [i,j] *y [j] ;

writeln (‘Вывод результатов решения системы уравненй матричным способом’);

for i: =1 to n do write (‘ ‘, s [i]: 5: 2);

writeln (‘ввод матрицы коэффициентов при неизвестных х’);

for i: =1 to N do

for j: =1 to N do

write (‘ введите a [‘, i,’,’,j,’] => ‘);

writeln (‘ввод столбца свободных членов’);

for i: =1 to N do

write (‘ введите b [‘, i,’] => ‘);

writeln (‘введите вариант ‘);

writeln (‘ 1 — решение системы линейных уравнений методом Гаусса ‘);

write (‘ 2 — решение системы линейных уравнений матричным методом => ‘);

Курсовая работа: «Решение систем n линейных уравнений с n неизвестными».

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

1. Решение систем n линейных уравнений с n неизвестными

1.1. Основные понятия

Системой m линейных уравнений с n неизвестными называется система уравнений вида (1):

Систему линейных уравнений (1) можно записать в матричной форме

Здесь A – матрица системы; X – матрица- столбец неизвестных; B – матрица-столбец свободных членов.

С системой линейных уравнений (1) связана ещё одна матрица ,

полученная из матриц A добавлением столбца B свободных членов, и называемая расширенной матрицей системы (1):

Если в системе линейных уравнений (1) все свободные члены равны нулю (т. е. B – нулевая матрица-столбец), то она называется однородной, в противном случае – неоднородной.

Решением системы линейных уравнение называется упорядоченная совокупность n чисел α1,α2,…,αn, которая при подстановке в систему обращает каждое уравнение в тождество.

Если система линейных уравнений имеет хотя бы одно решение, то она называется совместной, в противном случае – несовместной.

Две системы линейных уравнений называются равносильными (эквивалентными), если равны множества их решений.

1.2. Решение системы методом обратной матрицы

Пусть дана система n линейных уравнений с n неизвестными, у которой матрица A системы – невырожденная, т. е. | A |≠0. Запишем систему в матричной форме: AX=B .

Так как | A |≠0, то существует матрица А -1 . Умножим слева обе части матричного уравнения на А -1 : А -1 АХ = А -1 В или

Равенство (4) – матричная форма записи решения системы (1).

Для того чтобы найти элементы матрицы X неизвестных, нужно найти обратную матрицу А -1 и умножить её на столбец свободных членов B .

Решить систему уравнений матричным методом

Запишем систему в матричном виде:

Выясним, является ли матрица A системы невырожденной:

Следовательно, матрица A является невырожденной. Поэтому существует обратная матрица А -1 ; воспользуемся формулой:

Найдём произведение А -1 В :

Матрица неизвестных равна:

Ответ можно записать также в виде .

1.3. Решение системы методом Крамера

Система n линейных уравнений с n неизвестными называется крамеровской, если матрица A системы является невырожденной (т. е. | A |≠0).

Теорема (Крамера). Крамеровская система n линейных уравнений с n неизвестными имеет единственное решение, которое находится по формулам (5) :

где | A | − определитель матрицы системы, | Aij | − определитель матрицы, получаемый из матрицы A заменой j -го столбца столбцом свободных членов B .

Заметим, что способ решения системы линейных уравнений, основанный на формулах Крамера, называют методом или правилом Крамера.

Решить систему методом Крамера.

Данная система линейных уравнений является крамеровской (так как | A |≠0). Согласно формулам (5) имеем:

Замечание. Метод обратной матрицы и метод Крамера решения систем линейных уравнений становятся трудоёмкими при n ≥4.

1.4. Решение системы уравнений методом Гаусса

Методом Гаусса (методом последовательного исключения неизвестных) можно решить любую систему линейных уравнений. Процесс решения системы по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) систему с помощью элементарных преобразований приводят к ступенчатому виду (её расширенная матрица − ступенчатая). На втором этапе (обратный ход) из ступенчатой системы последовательно, начиная с последнего уравнения, определяются значения неизвестных.

Эквивалентными (равносильными) преобразованиями системы линейных уравнений называются следующие действия:

1) перестановка местами двух уравнений системы,

2) умножение любого уравнения на число, отличное от нуля,

3) прибавление к одному из уравнений другого уравнения, умноженного на любое число,

4) удаление (вписывание) уравнения вида 0 x 1+0 x 2+…+0 xn =0.

На практике проделывают эквивалентные преобразования не над системой, а над её расширенной матрицей.

Проиллюстрируем применение метода Гаусса.

Методом Гаусса решить систему уравнений:

Выпишем расширенную матрицу и с помощью эквивалентных преобразований приведем её к ступенчатому виду:

1-ю строку прибавим к 3-й, а затем умножим её на (−1) и прибавим к 4-й.

В дальнейшем 1-ю строку не трогаем, работаем со 2-й строкой.

Прибавим 2-ю строку к 3-й, а затем прибавим утроенную 2-ю строку к 4-й. Далее первые две строки не трогаем, работаем с 3-й.

Умножим 3-ю строку на 7 и прибавим к 4-й .

Таким образом, в результате проведённых преобразовании пришли к следующей системе линейных уравнений, равносильной данной:

Системы линейных уравнений

Мы рассматриваем системы линейных алгебраических уравнений вида

где , — натуральные числа ( — количество уравнений, — количество неизвестных), — коэффициенты при неизвестных, которые предполагаются заранее заданными; — также априори заданные постоянные, называемые свободными членами.

Матрицей системы называется следующая матрица (прямоугольная таблица чисел), составленная из коэффициентов системы

Расширенной матрицей системы называется матрица системы, к которой справа приписан столбец свободных членов. Обычно его отделяют от матрицы системы вертикальной чертой:

Решением системы называется такой набор постоянных , что при подстановке вместо переменных значений каждое из равенств системы обратится в тождество.

Системы линейных уравнений классифицируются по числу решений следующим образом:

  • совместная система — система линейных уравнений, имеющая хотя бы одно решение;
  • несовместная (противоречивая) система — система, не имеющая ни одного решения;
  • определенная система — система, имеющая единственное решение;
  • неопределенная система — система, имеющая более одного решения.

Существуют два основных способа решения линейных систем: метод Гаусса и, если (то есть если матрица системы квадратная), метод (или правило) Крамера.

Метод Гаусса.

Для решения системы не обязательно «таскать за собой» полную запись системы — достаточно работать с расширенной матрицей. При этом с ней можно производить операции, которые называются элементарными преобразованиями. К таковым относятся следующие действия со строками расширенной матрицы:

  • перемена мест строк;
  • умножение одной из строк на число, отличное от нуля;
  • прибавление к одной из строк линейной комбинации нескольких других.

Отметим, что лучше не производить операции со столбцами расширенной матрицы, ибо без этих преобразований всегда можно обойтись, хотя они иногда и упрощают вид системы. Неудобство, связанное с ними, состоит в том, что при этом приходится «вести протокол», чтобы затем правильно интерпретировать ответ. Например, перемена мест столбцов означает соответствующее изменение нумерации переменных и после получения ответа ее надо восстановить.

Если в процессе преобразований появляется нулевая строчка, то мы ее вычеркиваем, уменьшая количество строк на единицу.

При элементарных преобразованиях может получиться матрица, у которой есть строчка, все элементы которой слева от черты равны нулю, а справа стоит ненулевое число. В этом случае мы отмечаем, что система несовместна (противоречива), то есть не имеет решения. То же самое происходит, если совпадают две строчки за исключением свободных членов, которые различны. Например, несовместной является следующая система:

Желательной целью цепочки элементарных преобразований является приведение расширенной матрицы к такому виду, что на месте основной матрицы системы стоит единичная матрица, то есть единичная матрица стоит слева от черты в расширенной матрице. В этом случае процедура закончена и система является определенной, то есть имеет одно решение (один набор значений переменных). Этот набор переменных указан столбцом свободных членов.

Пример 1.

Выпишем расширенную матрицу системы и сделаем пару элементарных преобразований:

Из первой и второй строк мы вычли третью. После этого все элементы второй строки разделим на 2 и полученную строку сложим с первой, записав сумму на место первой строки:

В получившейся матрице все элементы первой строки сократим на 4, элементы второй строки умножим на —1 и затем поменяем первую и третью строки местами, чтобы получилась треугольная матрица, то есть матрица, у которой все элементы ниже главной диагонали равны 0:

Наконец, мы приводим матрицу к диагональному виду и выписываем ответ:

Таким образом, мы нашли некоторое решение. Это означает, что система совместна.

Найденное решение оказалось единственным. Это означает, что система определённа.

Если к единичной матрице не удается привести левую часть, но в то же время система не является противоречивой, то в этом случае система является совместной, но неопределенной, то есть имеет бесконечное множество решений. В этом случае одной или нескольким переменным можно придать произвольные значения, которые обычно не фиксируются, условно обозначаются буквами, например , и называются параметрами. Остальные переменные однозначно выражаются через эти параметры.

Пример 2.

Выпишем расширенную матрицу системы и сделаем естественные преобразования:

Из третьей строки мы вычли вторую и удвоенную первую. После этого вычеркнем нулевую строку и из второй строки вычтем первую. Затем выделим единичную матрицу коэффициентов перед и :

Отсюда следует, что .

Таким образом, система имеет решение, то есть она совместна. Найденное решение оказалось не единственным. Это означает, что система является неопределенной. Если ставится задача найти какое-нибудь решение, то мы можем положить а равным, например, 1, и тогда .

Правило Крамера.

Этот метод используется для решения систем в случае, когда число уравнений совпадает с числом неизвестных, то есть :

Обозначим через определитель матрицы системы

Предполагается, что определитель системы не равен нулю (в противном случае система является либо неопределенной, либо несовместной). Обозначим через определитель системы, которая получается из основной путем замены -ro столбца на столбец свободных членов:

Формулы Крамера: .

Теорема Крамера. Рассматривается линейная система, в которой число уравнений совпадает с числом неизвестных.

Если определитель матрицы системы равен нулю, то система является либо несовместной, либо неопределенной.

Если определитель матрицы системы не равен нулю, то система является совместной и определенной, причем решения системы находятся по формулам Крамера.

Обратная матрица.

Квадратная матрица называется особой, если ее определитель равен нулю. В противном случае матрица называется не особой. Заметим (без доказательства), что определитель произведения двух квадратных матриц одной размерности равен произведению определителей этих матриц, то есть . Отсюда следует, что матрица является не особой тогда и только тогда, когда каждая их матриц-множителей является не особой.

Пусть — квадратная матрица (). Квадратная матрица той же размерности называется матрицей, обратной к , если , где — единичная матрица той же размерности. Если обратная матрица существует, то она обозначается через .

Теорема об обратной матрице. Квадратная матрица имеет обратную тогда и только тогда, когда она не особая, то есть . При этом:

1) , то есть матрица коммутирует с матрицей ;

2) обратная матрица (если она существует) единственна:

3) если и — не особые матрицы, то существует обратная к их произведению, причем ;

4) .

Метод Гаусса нахождения обратной матрицы.

Существует несколько способов нахождения обратной матрицы. Покажем, как это делается методом Гаусса.

Для произвольной квадратной матрицы построим спаренную прямоугольную матрицу (). Задача состоит в том, чтобы допустимыми элементарными преобразованиями «перевести» матрицу в левую часть, то есть к виду (). Матрица и окажется обратной к матрице .

Пример 3.

Найти матрицу, обратную к матрице .

Решение:

Выпишем спаренную матрицу, вычтем из первой строки вторую, а затем поменяем строки местами:

Таким образом, обратная матрица найдена: . Произведем проверку: .

Пример 4.

Найти матрицу, обратную к матрице .

Решение:

Выпишем спаренную матрицу и сделаем пару элементарных преобразований:

Из второй и третьей строк мы вычли первую. После этого у всех элементов третьей строки поменяем знак и трижды прибавим ко второй строке. Далее разделим вторую строку на 8, а затем вычтем вторую строку из первой и дважды из третьей)

Таким образом, обратная матрица найдена. Произведем проверку:

Матричная запись решения линейной системы.

Рассмотрим линейную систему, в которой число уравнений совпадает с числом неизвестных, то есть систему вида

, где

Если — не особая матрица, то существует обратная к ней. Умножив обе части равенства на , получим, что

Это и есть решение системы.

На этой странице найдёте другие готовые курсовые работы во высшей математике:

Можете посмотреть другие готовые курсовые работы по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://infourok.ru/kursovaya-rabota-reshenie-sistem-n-lineynih-uravneniy-s-n-neizvestnimi-3235586.html

http://lfirmal.com/kursovaya-rabota-na-temu-sistemyi-linejnyih-uravnenij/