Решение системы уравнений методом оценки

Решение уравнений методом оценки

Решение уравнений методом оценки основано на сравнении области значений функций, стоящих в левой и правой части уравнения.

Если в уравнении

то равенство возможно тогда и только тогда, когда и f(x) и g(x) одновременно равны a:

При этом, если максимальное значение функции, стоящей в одной части уравнения, равно минимальному значению функции, стоящему в другой части уравнения, и эти значения достигаются для обеих функций при x=x0, то xo — корень уравнения.

Графически это можно проиллюстрировать так:

Если максимальное значение функции, стоящей в одной части уравнения, равно минимальному значению функции, стоящему в другой части уравнения, но эти значения достигаются при разных x0, то уравнение не имеет корней:

Получив систему уравнений

достаточно решить одно из уравнений (которое проще), а затем проверить, являются ли найденные корни корнями другого уравнения.

Чаще всего при решении уравнений методом оценки правой и левой части используют следующие соображения:

причём равенство достигается при

4) Квадратичная функция в вершине параболы (x0; y0)

при a>0 принимает своё наименьшее значение:

при отрицательном коэффициенте a при x² — наибольшее значение:

где n — натуральное число.

Примеры решения уравнений методом оценки левой и правой части.

— квадратичная функция. График — парабола ветвями вверх. Наименьшее значение принимает в вершине

С другой стороны

Следовательно, исходное уравнение равносильно системе уравнений

Корень второго уравнения:

x=2. Проверяем, является ли 2 корнем первого уравнения:

— верно. Следовательно, x=2 — единственный корень.

Так как x⁴≥0, то 25+ x⁴≥25, а значит,

С другой стороны,

Следовательно, исходное уравнение равносильно системе уравнений

Решаем первое уравнение

Проверяем, является ли x=0 корнем второго уравнения:

— верно. Значит, x=0 — корень данного уравнения.

Так как сумма взаимно-обратных положительных чисел не меньше двух,

Так как сумма положительных взаимно-обратных чисел равна 2, если эти числа равны между собой, то

Проверяем, являются ли эти корни корнями второго уравнения.

Таким образом, исходное уравнение имеет единственный корень x= -1.

Метод оценки в задачах с параметрами

В этой статье мы рассмотрим мощный метод, который применяется, когда в левой и правой частях уравнения или неравенства стоят функции разных типов. Для того чтобы лучше его запомнить, расскажем историю о том, как птичка и рыбка полюбили друг друга.

Еще раз: в левой и правой частях уравнения находятся функции разных типов. Мы помним, что в математике существует 5 типов элементарных функций: степенные, показательные, логарифмические, тригонометрические и обратные тригонометрические. Подробно о них — в статье «Элементарные функции и их графики».

Мы знаем из курса алгебры, что уравнения, которые мы решаем, обычно относятся к одному из этих пяти типов. Показательные и логарифмические, квадратные и тригонометрические уравнения — для каждого типа есть свои характерные приемы и способы решения. И основаны они на тех или иных свойствах функций. Для тригонометрических уравнений — свои способы решения, для логарифмических — свои.

Но сейчас мы рассмотрим уравнение, в левой и правой частях которого находятся функции разных типов. Вот оно:

Такое уравнение бесполезно возводить в квадрат или делать с ним арифметические действия. Бесполезно брать логарифмы от обеих частей — от этого оно станет только хуже.

Что же с ним делать? Упростим его, насколько возможно.

Посмотрим на правую часть этого уравнения. Очевидно,

Интересно — а какой же будет левая часть? Давайте оценим и ее тоже.

Поскольку получим, что

Получается, что при всех значениях х левая часть уравнения не меньше, чем 8, а правая часть не больше, чем 8. И это значит, что решением уравнения могут быть только такие значения переменной х, когда и левая, и правая часть равны 8. Тогда они равны друг другу. В этом и состоит метод оценки.

Метод оценки применяется для уравнений и неравенств, где функции, стоящие в левой и правой части, могут быть равны друг другу только в определенной точке, причем одна из них принимает в этой точке наименьшее значение, а другая — наибольшее.

Вот как это выглядит:

А чтобы лучше запомнить суть метода, рассказываем историю.

Глубоко-глубоко в море жила маленькая рыбка. А высоко-высоко в небе жила маленькая птичка. И однажды они полюбили друг друга! А встретиться они могли только в одной точке, на границе моря и неба, до которой рыбке надо подняться, а птичке — спуститься!

Смотри видео о том, как птичка и рыбка полюбили друг друга и что из этого получилось

О чем эта история? О нашем уравнении, конечно! В левой и правой его частях находятся функции разных типов. И при определенном значении х они оказались равны друг другу. Легко заметить, что значения выражения в левой части всегда больше либо равны восьми («птичка»), значения выражения в правой части — меньше либо равные восьми («рыбка»). И возможно, есть такая точка, где у одной из этих функций будет минимум, а у другой — максимум, причем значение каждой из них станет равно восьми.

Нам осталось только проверить, что эта точка действительно есть. Приравняем правую часть к восьми.

Подставив в левую часть, получим, что и она равна восьми при этом значении x. Значит, является единственным корнем данного уравнения.

Вот еще одна задача на метод оценки.

Умножим обе части данного неравенства на положительную величину:

В левой и правой частях полученного неравенства оказались функции разных типов. Метод оценки!

Выделим под логарифмом полный квадрат:

Неравенство примет вид:

Наибольшее значение выражения под логарифмом равно 2. Стало быть, наибольшее значение логарифма равно
, то есть 1, и достигается оно при единственном значении x = 3.

В то же время, наименьшее значение выражения также равно 1, и достигается оно при том же единственном значении x= 3.

Поэтому последнее неравенство будет выполнено лишь в одном-единственном случае: когда обе его части равны 1, т. е. при x = 3. Решением данного неравенства служит единственное число!

Мы обещали задачи с параметрами, которые решаются методом оценки. Вот, пожалуйста:

18. Найдите все значения а, при которых уравнение

имеет ровно два решения.

Обозначим Уравнение примет вид:

Мы видим, что левая часть этого уравнения не меньше единицы, а правая часть — не больше единицы. Равенство может быть, только если обе они равны единице.

Это классическая задача на метод оценки.

В нашем случае функция f в левой части уравнения и функция g в правой части «встречаются», когда одна из них принимает свое наименьшее значение, равное единице, а другая — свое наибольшее значение, также равное единице.

Второе уравнение означает, что частное — целое число.

В первом уравнении сделаем замену

Обозначим а — 6 = b и найдем, сколько корней имеет уравнение при неотрицательных z и различных b.

Нам нужно, чтобы исходное уравнение относительно х имело два корня.

Это происходит, когда уравнение имеет единственный положительный корень , которому соответствуют и

Заметим, что так как если то и двух корней не получится.

График функции — парабола с вершиной М(3;-9)

1) Если , то уравнение имеет единственный корень , которому соответствуют два корня исходного уравнения: и

Поскольку , в этом случае . Это значение удовлетворяет и второму уравнению системы: — целое.

2) Уравнение > имеет единственное положительное решение также при , при этом и

Исследование СЛАУ. Общие сведения

В данной статье мы расскажем о методах, видах, условиях и определениях исследований решений систем линейных уравнений, что такое метод Кронекера-Капели, а также приведем примеры.

Общие сведения (определения, условия, методы, виды)

Системы линейных алгебраических уравнений с n неизвестными могут иметь:

  • единственное решение;
  • бесконечное множество решение (неопределенные СЛАУ);
  • ни одного решения (несовместные СЛАУ).

Пример 1

Система x + y + z = 1 2 x + 2 y + 2 z = 3 не имеет решений, поэтому она несовместна.

Система x + y = 1 2 x + 7 y = — 3 имеет единственное решение x = 2 ; y = 1 .

Система x + y = 1 2 x + 2 y = 2 3 x + 3 y = 3 имеет бесконечное множество решений x = t y = 1 — t при — ∞ t ∞ .

Перед решением системы уравнений необходимо исследовать систему, т.е. ответить на следующие вопросы:

  • Совместна ли система?
  • Если система совместна, то, какое количество решений она имеет — одно или несколько?
  • Как найти все решения?

Если система малоразмерна при m = n , то ответить на поставленные вопросы можно при помощи метода Крамера:

  • если основной определитель системы, то система совместна и имеет единственное решение, которое вычисляется методом Крамера;
  • если, и один из вспомогательных определителей, то система не является совместной, т.е. не имеет решений;
  • если и все, и один из коэффициентов СЛАУ, то система не является определенной и имеет бесконечное множество решений.

Ранг матрицы и его свойства

Бывают случаи, которые выбиваются из представленных вариантов решения СЛАУ, например, линейные уравнения с большим количеством уравнений и неизвестных.

Для такого варианта решения существует ранг матрицы, который представляет собой алгоритм действий в случае решения системы матрицы, когда

В математике выделяют следующие подходы к определению ранга матрицы:

  • при помощи понятия линейной зависимости/независимости строк/столбцов матрицы. Ранг равен максимальному количеству независимых строк (столбцов) матрицы
  • при помощи понятия минора матрицы в качестве наивысшего порядка минора, который отличается от нуля. Минор матрицы порядка k — определитель k-го порядка, составленный из элементов, которые стоят на пересечении вычеркиваемых k-строк и k-столбцов матрицы;
  • при помощи метода Гаусса. По завершении прямого хода ранг матрицы равняется количеству ненулевых строк.

Обозначение ранга матрицы: r ( A ) , r g ( A ) , r A .

Свойства ранга матрицы:

  1. квадратная невырожденная матрица обладает рангом, который отличается от нуля;
  2. если транспонировать матрицу, то ранг матрицы не изменяется;
  3. если поменять местами 2 параллельные строки или 2 параллельных столбца, ранг матрицы не изменяется;
  4. при удалении нулевого столбца или строки ранг матрицы не изменяется;
  5. ранг матрицы не изменяется, если удалить строку или столбец, которые являются линейной комбинацией других строк;
  6. при умножении все элементов строки/столбца на число k н е р а в н о н у л ю ранг матрицы не изменяется;
  7. ранг матрицы не больше меньшего из ее размеров: r ( А ) ≤ m i n ( m ; n ) ;
  8. когда все элементы матрицы равны нулю, то только тогда r ( A ) = 0 .

Пример 2

А 1 = 1 1 1 2 2 2 3 3 3 , B 1 = 1 0 0 0 0 0

r ( A 1 ) = 1 , r ( B 1 ) = 1

А 2 = 1 2 3 4 0 5 6 7 0 0 0 0 ; В 2 = 1 1 3 1 2 1 4 3 1 2 5 0 5 4 13 6


источники:

http://ege-study.ru/metod-ocenki-v-zadachax-s-parametrami/

http://zaochnik.com/spravochnik/matematika/issledovanie-slau/slau/