Решение системы уравнений при помощи таблицы

Методы решения систем уравнений с использованием электронных таблиц MS Excel

Какие основные способы решения систем уравнений применяются учащимися на уроках? Способ подстановки, способ сложения, графический метод.

В данной работе показано, как с помощью электронных таблиц MS Excel можно упростить графический метод решения систем уравнений, а также решение систем линейных уравнений методом Крамера.

Графический метод решения систем уравнений.

Графический метод наглядно показывает решение систем уравнений, но недостатком этого метода считается:

— много времени уходит на построение графиков функций;

— погрешность при построении;

— погрешность нахождения корней системы уравнений.

Многие из этих минусов можно избежать с помощью электронных таблиц MS Excel.

Решить графически системы уравнений с помощью MS Excel.

Преобразуем данные системы и внесем данные в MS Excel. (см. Приложение1.xls)

Вид данных графиков функций хорошо известен нам по урокам математики, полученные решения означают, что для первой системы уравнений графики функций пересекаются в двух точках; для второй системы уравнений графики функций касаются в точке; для третьей системы уравнений графики функций не пересекаются. Проиллюстрируем эти решения средствами MS Excel.

ABC
1ху1у2
2-2=А2^2-3*A2-4=-1*A2-4
3-1,5

Ответ: (0;-4), (2;-6)

ABC
1ху1у2
2-2=А2^2-3*A2-4=A2-8
3-1,5

Ответ: (2;-6)

ABC
1ху1у2
2-2=А2^2-3*A2-4=-1*A2-8,5
3-1,5

Ответ: нет решений

Построив графики уравнений, выясните, сколько решений имеет система уравнений:

Решение систем линейных уравнений методом Крамера.

Рассмотрим четвертый способ решения систем уравнений, который называется методом Крамера и решается с помощью определителей.

Запишем метод Крамера для систем 2-го порядка.

решение записывается в виде: , где

, ,

, система имеет единственное решение — ,

система имеет бесконечное множество решений.

система не имеет решения.

Для упрощения вычислений можно использовать электронные таблицы MS Excel. В MS Excel есть формула позволяющая упростить процесс подсчета определителя – функция МОПРЕД(диапазон ячеек) (Функция МОПРЕД – возвращает определитель матрицы). Введя коэффициенты системы в ячейки и применив данную функцию можно найти значение определителя матрицы и вычислить корни системы по формуле Крамера.

Решите систему уравнений

, ,

ABCDEFG
143
21-4=МОПРЕД(А1:В2)
3
423
5-9-4х=МОПРЕД(А4:В5)х==D5/D2
6
742
81-9у=МОПРЕД(А7:В8)у==D8/D2
ABCDEFG
143
21-4-19
3
423
5-9-4х19х=-1
6
742
81-9у-38у=2

Выясните, имеет ли решения система и сколько: а)

, ,

Ответ: система имеет бесконечное множество решений.

б)

Ответ: система не имеет решение.

Усложним работу. Рассмотрим решение системы 3 линейных уравнений с 3 неизвестными.

Система трёх линейных уравнений с тремя неизвестными.

, , ,

,

Решение системы уравнений в Microsoft Excel

Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными способами.

Варианты решений

Любое уравнение может считаться решенным только тогда, когда будут отысканы его корни. В программе Excel существует несколько вариантов поиска корней. Давайте рассмотрим каждый из них.

Способ 1: матричный метод

Самый распространенный способ решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:

    Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1. Обозначаем полученную таблицу, как вектор A.

Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B.

Аргумент «Массив» — это, собственно, адрес исходной таблицы.

Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию», расположенную около строки формул.

Выполняется запуск Мастера функций. Переходим в категорию «Математические». В представившемся списке ищем наименование «МОБР». После того, как оно отыскано, выделяем его и жмем на кнопку «OK».

Итак, после этого программа производит вычисления и на выходе в предварительно выделенной области мы имеем матрицу, обратную данной.

Теперь нам нужно будет умножить обратную матрицу на матрицу B, которая состоит из одного столбца значений, расположенных после знака «равно» в выражениях. Для умножения таблиц в Экселе также имеется отдельная функция, которая называется МУМНОЖ. Данный оператор имеет следующий синтаксис:

Выделяем диапазон, в нашем случае состоящий из четырех ячеек. Далее опять запускаем Мастер функций, нажав значок «Вставить функцию».

В категории «Математические», запустившегося Мастера функций, выделяем наименование «МУМНОЖ» и жмем на кнопку «OK».

Активируется окно аргументов функции МУМНОЖ. В поле «Массив1» заносим координаты нашей обратной матрицы. Для этого, как и в прошлый раз, устанавливаем курсор в поле и с зажатой левой кнопкой мыши выделяем курсором соответствующую таблицу. Аналогичное действие проводим для внесения координат в поле «Массив2», только на этот раз выделяем значения колонки B. После того, как вышеуказанные действия проведены, опять не спешим жать на кнопку «OK» или клавишу Enter, а набираем комбинацию клавиш Ctrl+Shift+Enter.

  • После данного действия в предварительно выделенной ячейке отобразятся корни уравнения: X1, X2, X3 и X4. Они будут расположены последовательно. Таким образом, можно сказать, что мы решили данную систему. Для того, чтобы проверить правильность решения достаточно подставить в исходную систему выражений данные ответы вместо соответствующих корней. Если равенство будет соблюдено, то это означает, что представленная система уравнений решена верно.
  • Способ 2: подбор параметров

    Второй известный способ решения системы уравнений в Экселе – это применение метода подбора параметров. Суть данного метода заключается в поиске от обратного. То есть, основываясь на известном результате, мы производим поиск неизвестного аргумента. Давайте для примера используем квадратное уравнение

      Принимаем значение x за равное 0. Высчитываем соответствующее для него значение f(x), применив следующую формулу:

    Вместо значения «X» подставляем адрес той ячейки, где расположено число 0, принятое нами за x.

    Переходим во вкладку «Данные». Жмем на кнопку «Анализ «что если»». Эта кнопка размещена на ленте в блоке инструментов «Работа с данными». Открывается выпадающий список. Выбираем в нем позицию «Подбор параметра…».

    Запускается окно подбора параметров. Как видим, оно состоит из трех полей. В поле «Установить в ячейке» указываем адрес ячейки, в которой находится формула f(x), рассчитанная нами чуть ранее. В поле «Значение» вводим число «0». В поле «Изменяя значения» указываем адрес ячейки, в которой расположено значение x, ранее принятое нами за 0. После выполнения данных действий жмем на кнопку «OK».

    После этого Эксель произведет вычисление с помощью подбора параметра. Об этом сообщит появившееся информационное окно. В нем следует нажать на кнопку «OK».

  • Результат вычисления корня уравнения будет находиться в той ячейке, которую мы назначили в поле «Изменяя значения». В нашем случае, как видим, x будет равен 6.
  • Этот результат также можно проверить, подставив данное значение в решаемое выражение вместо значения x.

    Способ 3: метод Крамера

    Теперь попробуем решить систему уравнений методом Крамера. Для примера возьмем все ту же систему, которую использовали в Способе 1:

      Как и в первом способе, составляем матрицу A из коэффициентов уравнений и таблицу B из значений, которые стоят после знака «равно».

    Далее делаем ещё четыре таблицы. Каждая из них является копией матрицы A, только у этих копий поочередно один столбец заменен на таблицу B. У первой таблицы – это первый столбец, у второй таблицы – второй и т.д.

    Теперь нам нужно высчитать определители для всех этих таблиц. Система уравнений будет иметь решения только в том случае, если все определители будут иметь значение, отличное от нуля. Для расчета этого значения в Экселе опять имеется отдельная функция – МОПРЕД. Синтаксис данного оператора следующий:

    Таким образом, как и у функции МОБР, единственным аргументом выступает ссылка на обрабатываемую таблицу.

    Итак, выделяем ячейку, в которой будет выводиться определитель первой матрицы. Затем жмем на знакомую по предыдущим способам кнопку «Вставить функцию».

    Активируется окно Мастера функций. Переходим в категорию «Математические» и среди списка операторов выделяем там наименование «МОПРЕД». После этого жмем на кнопку «OK».

    Запускается окно аргументов функции МОПРЕД. Как видим, оно имеет только одно поле – «Массив». В это поле вписываем адрес первой преобразованной матрицы. Для этого устанавливаем курсор в поле, а затем выделяем матричный диапазон. После этого жмем на кнопку «OK». Данная функция выводит результат в одну ячейку, а не массивом, поэтому для получения расчета не нужно прибегать к нажатию комбинации клавиш Ctrl+Shift+Enter.

    Функция производит подсчет результата и выводит его в заранее выделенную ячейку. Как видим, в нашем случае определитель равен -740, то есть, не является равным нулю, что нам подходит.

    Аналогичным образом производим подсчет определителей для остальных трех таблиц.

    На завершающем этапе производим подсчет определителя первичной матрицы. Процедура происходит все по тому же алгоритму. Как видим, определитель первичной таблицы тоже отличный от нуля, а значит, матрица считается невырожденной, то есть, система уравнений имеет решения.

  • Теперь пора найти корни уравнения. Корень уравнения будет равен отношению определителя соответствующей преобразованной матрицы на определитель первичной таблицы. Таким образом, разделив поочередно все четыре определителя преобразованных матриц на число -148, которое является определителем первоначальной таблицы, мы получим четыре корня. Как видим, они равны значениям 5, 14, 8 и 15. Таким образом, они в точности совпадают с корнями, которые мы нашли, используя обратную матрицу в способе 1, что подтверждает правильность решения системы уравнений.
  • Способ 4: метод Гаусса

    Решить систему уравнений можно также, применив метод Гаусса. Для примера возьмем более простую систему уравнений из трех неизвестных:

      Опять последовательно записываем коэффициенты в таблицу A, а свободные члены, расположенные после знака «равно» — в таблицу B. Но на этот раз сблизим обе таблицы, так как это понадобится нам для работы в дальнейшем. Важным условием является то, чтобы в первой ячейке матрицы A значение было отличным от нуля. В обратном случае следует переставить строки местами.

    Копируем первую строку двух соединенных матриц в строчку ниже (для наглядности можно пропустить одну строку). В первую ячейку, которая расположена в строке ещё ниже предыдущей, вводим следующую формулу:

    Если вы расположили матрицы по-другому, то и адреса ячеек формулы у вас будут иметь другое значение, но вы сможете высчитать их, сопоставив с теми формулами и изображениями, которые приводятся здесь.

    После того, как формула введена, выделите весь ряд ячеек и нажмите комбинацию клавиш Ctrl+Shift+Enter. К ряду будет применена формула массива и он будет заполнен значениями. Таким образом мы произвели вычитание из второй строки первой, умноженной на отношение первых коэффициентов двух первых выражений системы.

    После этого копируем полученную строку и вставляем её в строчку ниже.

    Выделяем две первые строки после пропущенной строчки. Жмем на кнопку «Копировать», которая расположена на ленте во вкладке «Главная».

    Пропускаем строку после последней записи на листе. Выделяем первую ячейку в следующей строке. Кликаем правой кнопкой мыши. В открывшемся контекстном меню наводим курсор на пункт «Специальная вставка». В запустившемся дополнительном списке выбираем позицию «Значения».

    В следующую строку вводим формулу массива. В ней производится вычитание из третьей строки предыдущей группы данных второй строки, умноженной на отношение второго коэффициента третьей и второй строки. В нашем случае формула будет иметь следующий вид:

    После ввода формулы выделяем весь ряд и применяем сочетание клавиш Ctrl+Shift+Enter.

    Теперь следует выполнить обратную прогонку по методу Гаусса. Пропускаем три строки от последней записи. В четвертой строке вводим формулу массива:

    Таким образом, мы делим последнюю рассчитанную нами строку на её же третий коэффициент. После того, как набрали формулу, выделяем всю строчку и жмем сочетание клавиш Ctrl+Shift+Enter.

    Поднимаемся на строку вверх и вводим в неё следующую формулу массива:

    Жмем привычное уже нам сочетание клавиш для применения формулы массива.

    Поднимаемся ещё на одну строку выше. В неё вводим формулу массива следующего вида:

    Опять выделяем всю строку и применяем сочетание клавиш Ctrl+Shift+Enter.

  • Теперь смотрим на числа, которые получились в последнем столбце последнего блока строк, рассчитанного нами ранее. Именно эти числа (4, 7 и 5) будут являться корнями данной системы уравнений. Проверить это можно, подставив их вместо значений X1, X2 и X3 в выражения.
  • Как видим, в Экселе систему уравнений можно решить целым рядом способов, каждый из которых имеет собственные преимущества и недостатки. Но все эти методы можно условно разделить на две большие группы: матричные и с применением инструмента подбора параметров. В некоторых случаях не всегда матричные методы подходят для решения задачи. В частности тогда, когда определитель матрицы равен нулю. В остальных же случаях пользователь сам волен решать, какой вариант он считает более удобным для себя.

    Помимо этой статьи, на сайте еще 12683 инструкций.
    Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Решение систем уравнений

    Содержание:

    Графический метод решения систем уравнений

    Вспоминаем то, что знаем

    Что такое график уравнения с двумя неизвестными?

    Что представляет собой график линейного уравнения с двумя неизвестными?

    Решите графическим методом систему линейных уравнений:

    Открываем новые знания

    Решите графическим методом систему уравнений:

    Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту

    В курсе алгебры 7-го класса вы изучали системы линейных уравнений.

    Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные.

    По этой ссылке вы найдёте полный курс лекций по высшей математике:

    Начнём с графического метода

    Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений.

    Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков.

    Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему.

    Возможно вам будут полезны данные страницы:

    Примеры с решением

    Пример 1:

    Решим систему уравнений:

    Построим графики уравнений

    Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0).

    Парабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2).

    Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы.

    Ответ: (2; 5) и (-1; 2).

    Пример 2:

    Выясним количество решений системы уравнений:

    Построим графики уравнений

    Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3.

    Окружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем.

    Ответ: Два решения.

    Решение систем уравнений методом подстановки

    Вспоминаем то, что знаем

    Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки.

    Решите систему линейных уравнений методом подстановки:

    Открываем новые знания

    Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать?

    Решите систему уравнений методом подстановки:

    Как решить систему двух уравнений с двумя неизвестными методом подстановки?

    Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки?

    Ранее вы решали системы уравнений первой степени.

    Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки.

    Пример 3:

    Пусть (х; у) — решение системы.

    Выразим х из уравнения

    Подставим найденное выражение в первое уравнение:

    Решим полученное уравнение:

    Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой.

    Чуть сложнее дело обстоит в следующем примере.

    Пример 4:

    Решим систему уравнений:

    Пусть (х; у) — решение системы.

    Выразим у из линейного уравнения:

    Подставим найденное выражение в первое уравнение системы:

    После преобразований получим:

    Ответ: (-0,5; 0,5), (4; 5).

    Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом».

    Пример 5:

    Подставим во второе уравнение тогда его можно переписать в виде:

    Теперь выразим х через у из первого уравнения системы:

    Подставим в полученное ранее уравнение ху = 2:

    Корни этого уравнения:

    .

    Иногда решить систему можно, используя метод алгебраического сложения.

    Пример 6:

    Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим:

    .

    Корни этого уравнения:

    Подставим найденные значения в первое уравнение. Рассмотрим два случая:

    1)

    2) , получим уравнение корней нет.

    Иногда упростить решение удаётся, используя различные варианты замены неизвестных.

    Пример 7:

    Решим систему уравнений:

    Обозначим

    Второе уравнение системы примет вид:

    Решим полученное уравнение. Получим, умножая обе части на 2а:

    Осталось решить методом подстановки линейные системы:

    Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями

    Напомним, что при решении задач обычно действуют следующим образом:

    1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений;

    2) решают полученную систему;

    3) отвечают на вопрос задачи.

    Пример 8:

    Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника.

    Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — см.

    Воспользуемся теоремой Пифагора:

    Решим систему. Выразим из первого уравнения у:

    Подставим во второе уравнение:

    Корни уравнения:

    Найдём

    С учётом условия получим ответ: длина — 12 см, ширина — 5 см.

    Пример 9:

    Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа.

    Пусть х — первое число, у — второе число.

    Тогда: — произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число.

    Вычтем из второго уравнения первое. Получим:

    Дальше будем решать методом подстановки:

    Подставим в первое уравнение выражение для у:

    Корни уравнения: (не подходит по смыслу задачи).

    Найдём у из уравнения:

    Получим ответ: 16 и 7.

    Симметричные системы уравнений с двумя неизвестными

    Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид , то есть не меняется. А вот уравнение не симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид , то есть меняется.

    Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное.

    ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось.

    Например, если в системе уравнений

    переставить местами неизвестные х и у, то получим систему:

    Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось.

    Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных:

    Сначала научитесь выражать через неизвестные выражения:

    Присылайте задания в любое время дня и ночи в ➔

    Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

    Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

    Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


    источники:

    http://lumpics.ru/how-solve-system-equations-excel/

    http://natalibrilenova.ru/reshenie-sistem-uravnenij/