Решение системы уравнений с экспонентой

Системы уравнений по-шагам

Результат

Примеры систем уравнений

  • Метод Гаусса
  • Метод Крамера
  • Прямой метод
  • Система нелинейных уравнений

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

11.3.6. Решение систем показательных уравнений

Что является обязательным при решении системы показательных уравнений? Конечно, преобразование данной системы в систему простейших уравнений.

Решить системы уравнений:

Выразим у через х из (2) -го уравнения системы и подставим это значение в (1) -ое уравнение системы.

Решаем (2) -ое уравнение полученной системы:

2 х +2 x +2 =10, применяем формулу: a x + y =a x a y .

2 x +2 x ∙2 2 =10, вынесем общий множитель 2 х за скобки:

2 х (1+2 2 )=10 или 2 х ∙5=10, отсюда 2 х =2.

2 х =2 1 , отсюда х=1. Возвращаемся к системе уравнений.

Ответ: (1; 2).

Представляем левую и правую части (1) -го уравнения в виде степеней с основанием 2, а правую часть (2) -го уравнения как нулевую степень числа 5.

Если равны две степени с одинаковыми основаниями, то равны и показатели этих степеней — приравниваем показатели степеней с основаниями 2 и показатели степеней с основаниями 5.

Получившуюся систему линейных уравнений с двумя переменными решаем методом сложения.

Находим х=2 и это значение подставляем вместо х во второе уравнение системы.

Находим у.

Ответ: (2; 1,5).

Если в предыдущих двух примерах мы переходили к более простой системе приравнивая показатели двух степеней с одинаковыми основаниями, то в 3-ем примере эта операция невыполнима. Такие системы удобно решать вводом новых переменных. Мы введем переменные u и v, а затем выразим переменную u через v и получим уравнение относительно переменной v.

Решаем (2) -ое уравнение системы.

v 2 +63v-64=0. Подберем корни по теореме Виета, зная, что: v1+v2=-63; v1∙v2=-64.

Получаем: v1=-64, v2=1. Возвращаемся к системе, находим u.

Так как значения показательной функции всегда положительны, то уравнения 4 x = -1 и 4 y = -64 решений не имеют.

Представляем 64 и 1 в виде степеней с основанием 4.

Приравниваем показатели степеней и находим х и у.

Системы показательных уравнений и неравенств

Вы будете перенаправлены на Автор24

Способы решения систем уравнений

Для начала кратко вспомним, какие вообще существуют способы решения систем уравнений.

Существуют четыре основных способа решения систем уравнений:

Способ подстановки: берется любое из данных уравнений и выражается $y$ через $x$, затем $y$ подставляется в уравнение системы, откуда и находится переменная $x.$ После этого мы легко можем вычислить переменную $y.$

Способ сложения: в данном способе необходимо умножать одно или оба уравнения на такие числа, чтобы при сложении вместе обоих одна из переменных «исчезла».

Графический способ: оба уравнения системы изображается на координатной плоскости и находится точка их пересечения.

Способ введения новых переменных: в этом способе мы делаем замену каких-либо выражений для упрощения системы, а потом применяем один из выше указанных способов.

Системы показательных уравнений

Системы уравнений, состоящие из показательных уравнений, называются системой показательных уравнений.

Решение систем показательных уравнений будем рассматривать на примерах.

Решить систему уравнений

Решение.

Будем пользоваться первым способом для решения данной системы. Для начала выразим в первом уравнении $y$ через $x$.

Подставим $y$ во второе уравнение:

Ответ: $(-4,6)$.

Решить систему уравнений

Решение.

Данная система равносильна системе

Применим четвертый метод решения уравнений. Пусть $2^x=u\ (u >0)$, а $3^y=v\ (v >0)$, получим:

Решим полученную систему методом сложения. Сложим уравнения:

Тогда из второго уравнения, получим, что

Возвращаясь к замене, получил новую систему показательных уравнений:

Ответ: $(0,1)$.

Готовые работы на аналогичную тему

Системы показательных неравенств

Cистемы неравенств, состоящие из показательных уравнений, называются системой показательных неравенств.

Решение систем показательных неравенств будем рассматривать на примерах.

Решить систему неравенств

Решение:

Данная система неравенств равносильна системе

Для решения первого неравенства вспомним следующую теорему равносильности показательных неравенств:

Теорема 1. Неравенство $a^ >a^ <\varphi (x)>$, где $a >0,a\ne 1$ равносильна совокупности двух систем

Изобразим оба решения на числовой прямой (рис. 11)

Рисунок 11. Решение примера 3 на числовой прямой

Ответ: $(3,+\infty )$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 22 03 2021


источники:

http://mathematics-repetition.com/11-3-6-reshenie-sistem-pokazatelynh-uravneniy/

http://spravochnick.ru/matematika/pokazatelnaya_funkciya/sistemy_pokazatelnyh_uravneniy_i_neravenstv/