Решение системы уравнений с модулем с двумя переменными

Модули в системах уравнений и неравенств с двумя переменными

Подробней о раскрытии модуля в уравнении, см. §40 справочника для 7 класса, а также пример 2 §14 данного справочника.
Подробней о раскрытии модуля в неравенстве, см. §10 данного справочника.

п.1. Примеры

б) \( \left\< \begin < l >\mathrm & \\ \mathrm <(x-1)^2+y^2=1>& \end\right. \)
Проанализируем первый график:
Исходная прямая y = x – 1 превращается в ломаную y = |x – 1|, «отражается» в точке (1; 0) в положительную полуплоскость y > 0.
Далее, ломаная y = |x – 1| опускается на 1 вниз y = |x – 1| – 1.
Наконец, области y = |x – 1| – 1 с отрицательными Y снова отражаются в положительную полуплоскость y > 0.
Второй график – окружность с центром (1; 0), радиусом 1.

Решение – точка A(1; 3) и треугольник BCD, заданный системой трех неравенств:
\( \left\< \begin < l >\mathrm & \\ \mathrm & \\ \mathrm & \end\right. \)

Пример 3. Найдите значения параметра a, при которых система имеет ровно два решения:
\( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
y = x 2 – 5|x| + 4 – парабола y = x 2 – 5x + 4 = (x – 1)(x – 4), x > 0, отраженная в отрицательную полуплоскость x 0 является прямая \( \mathrm<2>=\frac<1+4><2>=2,5> \)
Вершина лежит на оси. Ордината вершины: y0 = 2,5 2 – 5 · 2,5 + 4 = –2,25.
В полуплоскости x –2,25 решений бесконечное множество (отрезки кривой).
Ответ: a = –2,25.

Решение системы уравнений с модулем с двумя переменными

§ 3. Решение систем с параметром и с модулями

В данном параграфе мы познакомимся со способами решения систем двух линейных уравнений с модулями.

Решите систему уравнений $$ \left\<\begin\left|x-y\right|=5,\\ 3x+2y=10.\end\right.$$

Модуль в уравнении `|x-y|=5` можно «раскрыть», пользуясь определением модуля числа:

$$\left|x-y\right|=\left\<\beginx-y,\;\mathrm<или>\;x-y\geq0,\\y-x,\;\mathrm<или>\;x-y =0` записывается в виде `x-y=5`, а при `x-y =0`, система имеет вид:

Итак, `x=5`, `y=0`, условие `x-y>=0` выполняется. Значит, найденные пары чисел является решением исходной системы.

2 случай. Если `x-y =0`, `y>=0`;

4) `x =0`, `y>=0`, система имеет вид:

Оба полученные значения удовлетворяют заданным условиям: `1,5>=0`, `0>=0`.

2 случай. `x>=0`, `y =0`.

3 случай. `x =0` система имеет вид:

Первое уравнение не имеет решения, так как сводится к равенству `0=6`, значит система не имеет решений.

4 случай. `x -5/2`, то `|y+5/2|=y+5/2`; если `y то `|y+5/2|=-y-5/2`.

Выражение `y-1=0`, если `y=1`.

Если `y>1`, то `|y-1|=y-1`, а если `y =1`, то `|y-1|=y-1` и `|y+5/2|=y+5/2`, получаем уравнение:

Тогда `x=1/3(2*2+5)=3`. Число `2>1`, так что пара `(3;2)` является решением системы.

Пусть теперь `-5/2 хождения `y` получаем уравнение

Число `8/13` больше `(-5/2)`, но меньше, чем `1`, поэтому пара чисел `(27/13;8/13)` является решением системы.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Немного теории.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\< \begin 3x+y=7 \\ -5x+2y=3 \end \right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ \left\< \begin y = 7—3x \\ -5x+2(7-3x)=3 \end \right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\< \begin 2x+3y=-5 \\ x-3y=38 \end \right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ \left\< \begin 3x=33 \\ x-3y=38 \end \right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение \( x-3y=38 \) получим уравнение с переменной y: \( 11-3y=38 \). Решим это уравнение:
\( -3y=27 \Rightarrow y=-9 \)

Таким образом мы нашли решение системмы уравнений способом сложения: \( x=11; y=-9 \) или \( (11; -9) \)

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.


источники:

http://zftsh.online/articles/5722

http://www.math-solution.ru/math-task/sys-lin-eq