Решение смешанной задачи уравнения теплопроводности

Метод Фурье для уравнения теплопроводности

Содержание:

По этой ссылке вы найдёте полный курс лекций по математике:

Займемся решением первой смешанной задачи для уравнения теплопроводности: найти решение и(х, t) уравнения удовлетворяющее начальному условию и граничным условиям Начнем с простейшей задачи: найти решение u(x,t) однородного уравнения удовлетворяющее начальному условию и нулевым (однородным) граничным условиям Метод Фурье для уравнения теплопроводности.

Будем искать нетривиальные решения уравнения (4), удовлетворяющие граничным условиям (6), в виде Псдстаапя в форме (7) в уравнение (4), получим или откуда имеем два обыжювенных дифференциальных уравнения Чтобы получить нетривиальные решения и(х, *) вида (7), удовлетворяющие граничным условиям (6), необходимо найти нетривиальные решения уравнения (10), удовлетворяющие граничным условиям.

Таким образом, для определения фунмдои Х(х) мы приходим к задаче на собственные значения: найти те значения параметра А, при которых существуют нетривиальные решения задачи Эта задача была рассмотрена в предыдущей главе. Там было показано, что только при существуют нетривиальные решения При А = А„ общее решение уравнения (9) имеет вид удовлетворяют уравнению (4) и граничным условиям (6). Образуем формальный ряд.

Потребовав, чтобы функция и(х> t), определяемая формулой (12), удовлетворяла начальному условию , получим Ряд (13) представляет собой разложение заданной функции в ряд Фурье по синусам в интервале (О, I). Коэффициенты а„ разложения определяются по известным формулам Метод Фурье для уравнения теплопроводности Предположим, что Тогдаряд (13) с коэффициентами, определяемыми по формулам (14), будет сходиться к функции абсолютно и равномерно.

Так как при то ряд при также сходится абсолютно и равномерно.

Поэтому функция и(х, t) — сумма ряда (12) — непрерывна в области и удовлетворяет начальному и граничному условиям. Остается показать, что функция и(х, t) удовлетворяет уравнению (4) в области 0. Для этого достаточно показать, что ряды, полученные из (12) почленным дифференцированием по t один раз и почленным дифференцированием по х два раза, также абсолютно и равномерно сходятся при.

Но это следует из того, что при любом t > 0 если п достаточно велико. Единственность решения задачи (4)-(6) и непрерывная зависимость решения от начальной функции были уже установлены ранее. Таким образом, для t > 0 задача (4)-(6) поставлена корректно; напротив, для отрицательных t зада ча эта некорректна. Замечание.

В отличие отдомового уравнения уравнение неомметрично огноситн о времени t: если заменить t на -t, то получаем уравнение другого вида описывает необратимые процессы: Мы можем предсказать, каким станет данное и через промежуток времени данной t, но мы не можем с уверенностью сказать, какн м было это и за время t до рассматриваемого момента. Это раолич иемежду предсказание м и предысторией типично для параболического ура внения и не имеет места, например, для волнового уравн сния; в случае последнего заглянуть в прошлое так же легко, как и в будущее.

Возможно вам будут полезны данные страницы:

Пример:

Найти распределение температуры в однородном стерве длины ж, если начальная температура стержня и на концах стержня поддерживается нулевая температура. 4 Задача сводится к решению уравнения при начальном условии и граничных условиях Применяя метод Фурье, ищем нетривиальные решения уравнения (15), удовлетворяющие граничным условиям (17), в виде Подставляя u(x,t) в форме (18) в уравнение (15) и разделяя переменные, получим откуда Собственные значения задачи . собственные функции Хп(х) = мп пх.

При А = А„ общее решение уравнения (19) имеет вид Tn(t) = апе а п\ так что Решение задачи (15)—(17) ищем в виде ряда Потребовав выполнения начального условия (16), получим откуда . Поэтому решением исходной задачи будет фунхция 2. Рассмотрим теперь следующую задачу: найти решение гх(ж, t) неоднородного уравнения _ удовДстворя ющее начальному условию и однородным граничным услови м Предположим, что функци / непрерывна, имеет непрерывную производ-ную и при всех t > 0 выполняется условие .

Решение задач:

Решение задачи (1)-(3) будем искать в виде где определим как решение задачи а функци — как решение задачи Задача (8)—(10) рассмотрена в п. 1. Будем искать решение v(x, t) задачи (5)-(7) в виде ряда по собстве нным функциям < краевой задачи . Подсгааяяя t) в виде в уравнение (5), получим Разложим функцию /ОМ) в ряд Фурье по синусам, где Сравнивая два разложения (12) и (13) функции /(х, t) в ряд Фурье, получаем ! Пользуясь начальным условием для v(x, t).

Метод Фурье для уравнения теплопроводности.

Находим, что Решения уравнений (15) при начальных условиях (16) имеют вид: Подставляя найденные выражения для Tn(t) в ряд (11), получим решение Функция будет решением исходной задачи (1)-(3). 3. Рассмотрим задачу: найти в области решение уравнения при начальном условии и неоднородных граничных условиях Непосредственно метод Фурье неприменим из-за неоднородности условий (20).

Введем новую неизвестную функцию v(x, t), положив где Тогда решение задачи (18)—(20) сведется к решению задачи (1)-(3), рассмотренной в п. 2, для функции v(x, J). Упражнения 1. Задан бесконечный однородный стержень. Покажи те, что если начальная температура то влобой момент температура стержня 2. Ко|рцы стержня длиной ж поддерживаются при температуре, равной нулю. Начальная температура определяется формулой Определите температуру стержня для любого момента времени t > 0. 3.

Концы стержня длиной I поддерживаются при температуре, равной нулю. Начальная температура стержня определяется формулой Определите температуру стержня для любого момента времени t > 0. 4. Концы стержня длиной I поддерживаются при температуре, равной нулю. Начальное распределение температуры Определите температуру стержня для любого момента времени t > 0. Ответы

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Решение систем линейных алгебраических уравнений

Главная > Решение

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

7.1 Метод сеток для решения смешанной задачи для уравнения параболического типа (уравнения теплопроводности)

Смешанная задача означает, что следует найти искомую функцию, удовлетворяющую заданному уравнению в частных производных, краевым, а так же начальным условиям.

Рассмотрим смешанную задачу для однородного уравнения теплопроводности

, k =const>0.

Задано начальное условие

и заданы краевые условия первого рода

Требуется найти функцию u (x,t) , удовлетворяющую в области D (0 x a , 0 t T) условиям (7.5) и (7.6). Физически это можно представить как стержень, на концах которого поддерживается требуемый температурный режим, заданный условиями (7.6).

Рисунок 10 – Неявная схема

При проведении замены получим , т.е. k =1. Задача решается методом сеток : строим в области D равномерную сетку с шагом h по оси x и шагом  по t (см. рисунок 10).

Приближенное значение искомой функции в точке обозначим через . Тогда ; ; i =0,1. n ; ;

j =0,1. m ; .
Заменим производные разностными отношениями

;

.

В результате получим неявную двухслойную схему с погрешностью O (  +h 2 )

.

Используя подстановку , выразим из этой схемы u i,j-1

,

где: u 0, j =  1 ( t j ) ; u n , j =  2 ( t j ) .

Получаем разностную схему, которой аппроксимируем уравнение (7.4). Эта схема (7.7) неявная, и выглядит так, как показано на рисунке 10. При построении схемы (7.7) получается система линейных уравнений с трехдиагональной матрицой. Решив ее любым способом (в частности, методом прогонки), получаем значения функции на определенных временных слоях. Так, на нулевом временном слое используем начальное условие U i,0 =f ( x i ), т.к. j =0. Эта неявная схема более устойчива для любых значений параметра >0.

Есть и явная схема (рисунок 11), но она устойчива только при , т.е. при .

Рисунок 11 — Явная схема

7.2 Решение задачи Дирихле для уравнения Лапласа методом сеток

Рассмотрим уравнение Лапласа

.

Уравнение (7.8) описывает распространение электромагнитных волн(полей). Будем рассматривать уравнение Лапласа в прямоугольной области с краевыми условиями

; ; ; ,

где -заданные функции. Заметим, что чаще всего область бывает не прямоугольной.

Введем обозначения u ij = u ( x i , y j ). Накладываем на прямоугольную область сетку ; i =0,1,…, n ; ; j =0,1,…, m . Тогда , .

Частные производные аппроксимируем по формулам

и заменим уравнение Лапласа конечно-разностным уравнением

Рисунок 12 – Схема “крест”

,

где: i =1,…, n -1, j =1. m -1 (т.е. для внутренних узлов).

Погрешность замены дифференциального уравнения разностным составляет величину О(). Выразим u i , j при h =l, и заменим систему

Получаем систему (7.10) линейных алгебраических уравнений, которые можно решить любым итерационным методом (Зейделя, простых итераций и т.д.). При этом построении системы использовалась схема типа “крест”(рисунок 12). Строим последовательность итераций по методу Гаусса-Зейделя

,

где s -текущая итерация.

Условие окончания итерационного процесса

.

Условие (7.11) ненадежно и на практике используют другой критерий

где .

Схема “крест “- явная устойчивая схема ( малое изменение входных данных ведет к малому изменению выходных данных).

7.3 Решение смешанной задачи для уравнения гиперболического типа методом сеток

Рассмотрим уравнение колебания однородной и ограниченной струны.

Задача состоит в отыскании функции u ( x , t ) при t >0, удовлетворяющей уравнению гиперболического типа

,

где: 0 x a ; 0 t

и краевым условиям

Заменим С на с t и получим уравнение

и в дальнейшем будем считать С =1.

Для построения разностной схемы решение задачи (7.12)-(7.14) построим в области сетку ; i = 0,1,…, n ; ; ; j =0,1,…, m ;  m = T .

Аппроксимируем (7.12) разностными производными второго порядка точности относительно шага

.

Полагая  =  / h перепишем (7.15), выразив U i , j +1. Таким образом получим трехслойную разностную схему

,

где: i =1,…, n ; j =1,…, m . Задаем нулевые граничные условия  1 ( t ) =0,  2 ( t ) =0. Тогда в (7.16) , для всех j .

Схема (7.16) называется трехслойной, т.к. она связывает значения искомой функции на трех временных слоях j -1, j , j +1.

Численное решение задачи состоит в вычислении приближенных значений решения u ( x , t ) в узлах при i =1,…, n ; j = 1,…, m . Алгоритм решения основан на том, что решение на каждом следующем слое ( j = 2,3. n ) можно получить пересчетом решений с двух предыдущих слоев ( j = 0,1. n — 1) по формуле (7.16). При j =0 решение известно из начального условия . Для вычисления решения на первом слое ( j = 1) положим

,

тогда , i = 1,2,…, n . Теперь для вычисления решений на следующих слоях можно использовать формулу (7.16).

Описанная схема аппроксимирует задачу (7.12)-(7.14) с точностью O (  + h ). Невысокий порядок аппроксимации по  объясняется грубостью аппроксимации по формуле (7.17).

Схема будет устойчивой, если выполнено условие .

Лабораторная работа № 1


Решение систем линейных алгебраических уравнений

Входные параметры: n—целое положительное число, равное порядку n системы; а — массив из n х n действительных чисел, содержащий матрицу коэффициентов системы (а(1) = а 11 , а(2) = a 12… а(n) = а n 1 , а(n + 1) = а 12 , . а(n х n) = а nn ); b — массив из n действительных чисел, содержащий столбец свободных членов системы (b(1) = b 1 , b(2)=b 2, …b(n)=b n ) .

Выходные параметры: b—массив из n действительных чисел (он же входной); при выходе из программы содержит решение системы b(l) = x 1 , b(2) = x 2 , … b(n) = х n ; error—признак правильности решения (код ошибки): если ks = 0, то в массиве b содержится решение системы, если error= 1, исходная система не имеет единственного решения (определитель системы равен нулю).

Перед обращением к подпрограмме SIMQ необходимо:

1) описать массивы а и b. Если система содержит n уравнений, то массив а должен содержать n 2 элементов, а массив b – n элементов;

2) присвоить значение параметру n, который равен числу
уравнений системы;

3) присвоить элементам массивов а и b значения коэффициентов системы следующим образом: a(l) = a 11 , а(2) = а 21 , а(3) = а 31 ,…а(n) = а n1 а(n+1) = а 12 , а(n+2) = а 22 … а(n x n) = а nn . b(1) = b 1 , b(2)=b 2, …b(n)=b n

4) проверить соответствие фактических параметров по типу и порядку следования формальным параметрам подпрограммы SIMQ. Параметры а и b — величины вещественного типа, n и error — целого типа.

Задание. Используя программу SIMQ, решить заданную систему трех линейных уравнений. Схема алгоритма приведена на рисунке 13.

Порядок выполнения лабораторной работы:

1. Составить головную программу, содержащую обращение к SIMQ и печать результатов;

2. Произвести вычисления на ЭВМ.

Пример. Решить систему уравнений

Рисунок 13 – Схема алгоритма метода Гаусса

PROCEDURE SIMQ(Nn:Integer;Var Aa:TMatr;Var Bb:TVector;Var Ks:Integer);

Var Max,U,V : Real; I,J,K1,L : Integer;

For I:=1 To Nn Do Aa[i,Nn+1]:=Bb[i];

For I:=1 To Nn Do

For L:=I+1 To Nn Do If (Abs(Aa[l,i])>Max) Then

For J:=I To Nn+1 Do

Begin U:=Aa[i,j]; Aa[i,j]:=Aa[k1,j]; Aa[k1,j]:=U;

For J:=I To Nn+1 Do Aa[i,j]:=Aa[i,j]/V;

V:=Aa[l,i]; For J:=I+1 To Nn+1 Do Aa[l,j]:=Aa[l,j]-Aa[i,j]*V;

For I:=Nn-1 Downto 1 Do

For J:=I+1 To Nn Do Bb[i]:=Bb[i]-Aa[i,j]*Bb[j];

Вычисления по программе привели к следующим результатам:

X(1)= .100000E+01 Х(2)= .200000Е+01 Х(3)= .З00000Е + 01

признак выхода 0

Варианты заданий для решения систем линейных алгебраических уравнений методом Гаусса приведены в таблице 1.

Метод квадратных корней Холецкого

Входные параметры: n—целое положительное число, равное порядку n системы; а — массив из n х n действительных чисел, содержащий матрицу коэффициентов системы (а(1) = а 11 , а(2) = a 12… а(n) = а n 1 , а(n + 1) = а 12 , . а(n х n) = а nn ); b — массив из n действительных чисел, содержащий столбец свободных членов системы (b(1) = b 1 , b(2)=b 2, …b(n)=b n ) .

Выходные параметры: b—массив из n действительных чисел (он же входной); при выходе из программы содержит решение системы b(l) = x 1 , b(2) = x 2 , … b(n) = х n ; p—количество операций.

Схема алгоритма приведена на рисунке 14.

Пример. Решить систему уравнений

Procedure Holets(n:integer;a:TMatr;b:TVector;var x:TVector;var p:integer);

Var i,j,k:integer; a11:real;

For i:=1 To n Do Begin

If i<>1 Then Begin

If a[i,i]=0 Then Begin

p:=0; error:=2; MessageDlg(‘. ‘,mtError,[mbOk],0);

For j:=1 To i Do Begin

For k:=1 To j-1 Do Begin

For i:=1 To n Do Begin

For j:=1 To i-1 Do b[i]:=b[i]-a[i,j]*b[j];

If a[i,i]=0 Then Begin

p:=0; error:=2; MessageDlg(‘. ‘,mtError,[mbOk],0);

For i:=n DownTo 1 Do Begin

For j:=n DownTo i+1 Do b[i]:=b[i]-a[i,j]*b[j];

Вычисления по программе привели к следующим результатам:

X(1)= .100000E+01 Х(2)= .200000Е+01 Х(3)= .З00000Е + 01

Рисунок 14 — Схема алгоритма метода Холецкого

Тема лабораторной работы №1 для контроля знаний проиллюстрирована контрольно – обучающей программой.


источники:

http://gigabaza.ru/doc/28461-p8.html