Решение трансцендентных уравнений методом ньютона

Решение трансцендентных уравнений методом касательных (метод Ньютона)

Графическая интерпретация метода представлена на рис.3.5. Предположим, что каким-либо способом найдено начальное приближение х0 к истинному корню. Например, при использовании отделения корней, в качестве х0 можно взять левую или правую границу промежутка, содержащего корень уравнения F(x) = 0, либо любую другую точку из этого промежутка. В точке х0 вычислим значение функции F(x), а также значение ее производной F ‘ (x). Следующее приближение к корню, т.е. точку х1 определим, как пересечение оси ОХ с касательной к кривой F(x) в точке х0:

Аналогичным образом, вычислив значения F(x) и F ‘ (x), в точке х1, можно получить приближение х2:

В общем случае вычислительный процесс метода Ньютона выражается формулой:

(3.6)

где каждое новое значение хk (k=1, 2, 3, …) будет располагаться все ближе к истинному корню х*., т.е. будет представлять собой все более точное приближение к решению уравнения F(x) = 0.

Рис.3.5. Метод Ньютона Рис.3.6. Модифицированный метод Ньютона

Процесс уточнения корня по формуле (3.6) следует прекращать, когда выполнится условие , т.е. когда расстояние между двумя соседними приближениями станет меньше заранее за­данной точности .

Метод Ньютона обладает высокой скоростью сходимости. Обычно абсолютная точность решения 10 -5 – 10 -6 достигается за 4-5 итераций. Недостатком метода является необходимость вычисления на каждом шаге не только левой части F(x) уравнения, но и ее первой производной.

На практике иногда применяется так называемый модифицированный метод Ньютона, который отличается от метода Ньютона тем, что первая производная от F(x) вычисляется лишь один раз в точке х0. Вычислительный процесс модифицированного метода Ньютона описывается формулой:

(3.7)

а его геометрическая иллюстрация приведена на рис. 3.6.

Метод Ньютона

Инструкция . Введите выражение F(x) , нажмите Далее . Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Правила ввода функции, заданной в явном виде

  1. Примеры правильного написания F(x) :
    1. 10•x•e 2x = 10*x*exp(2*x)
    2. x•e -x +cos(3x) = x*exp(-x)+cos(3*x)
    3. x 3 -x 2 +3 = x^3-x^2+3
    4. Выражение 0.9*x=sin(x)+1 необходимо преобразовать к виду: sin(x)+1-0.9*x . Аналогично, x^2-7=5-3x к виду x^2+3x-12 .

    Пусть дано уравнение f(x)=0 , где f(x) определено и непрерывно в некотором конечном или бесконечном интервале a ≤ x ≤ b . Всякое значение ξ, обращающее функцию f(x) в нуль, то есть такое, что f(ξ)=0 называется корнем уравнения или нулем функции f(x) . Число ξ называется корнем k -ой кратности, если при x = ξ вместе с функцией f(x) обращаются в нуль ее производные до (k-1) порядка включительно: f(ξ)=f’(ξ)= … =f k-1 (ξ) = 0 . Однократный корень называется простым.
    Приближенное нахождение корней уравнения складывается из двух этапов:

    1. Отделение корней, то есть установление интервалов [αii] , в которых содержится один корень уравнения.
      1. f(a)•f(b) , т.е. значения функции на его концах имеют противоположные знаки.
      2. f’(x) сохраняет постоянный знак, т.е. функция монотонна (эти два условия достаточны, но НЕ необходимы) для единственности корня на искомом отрезке).
      3. f”(x) сохраняет постоянный знак, т.е. функция выпукла вверх, либо – вниз.
    2. Уточнение приближенных корней, то есть доведение их до заданной точности.

    Геометрическая интерпретация метода Ньютона (метод касательных)

    Критерий завершения итерационного процесса имеет вид

    Метод Ньютона

    Этот онлайн калькулятор ищет корень (нуль) заданной функции, используя метод Ньютона (также известный как метод касательных)

    Этот онлайн калькулятор применяет метод Ньютона (также известный как метод касательных) используя калькулятор производных для получения аналитической формулы производной заданной функции (метод Ньютона требует вычисления производной). Под калькулятором можно прочитать краткое описание метода.

    Метод Ньютона

    Метод Ньютона 1

    Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации.

    Основная идея метода заключается в следующем: задаётся начальное приближение вблизи предположительного корня, после чего строится касательная к графику исследуемой функции в точке приближения, для которой находится пересечение с осью абсцисс. Эта точка берётся в качестве следующего приближения. Далее процесс повторяется, пока не будет достигнута необходимая точность.

    Уравнение касательной к графику функции выглядит следующим образом:
    ,
    где — тангенс угла пересечения касательной с осью абсцисс.

    Тангенс угла пересечения касательной с осью абсцисс, — не что иное, как значение производной в точке .
    С учетом того факта, что в точке пересечения с осью абсцисс значение y равно нулю, можно записать следующее выражение для нахождения точки пересечения (следующей точки приближения):

    Метод Ньютона является очень мощным методом поиска корней функции, так как имеет квадратичную скорость сходимости — количество значащих цифр примерно удваивается с каждым шагом итерации, однако существуют и ограничения, затрудняющие его применение. Так, например, если начальное приближение недостаточно близко к решению, то метод может не сойтись, если производная не непрерывна в точке корня, то метод может расходиться в любой окрестности корня, если не существует вторая производная в точке корня, то скорость сходимости метода может быть заметно снижена, если производная в точке корня равна нулю, то скорость сходимости не будет квадратичной, а сам метод может преждевременно прекратить поиск, и дать неверное для заданной точности приближение.

    Теорема Канторовича дает следующие условия применимости метода для поиска корней функции:

    1. функция должна быть ограничена;
    2. функция должна быть гладкой, дважды дифференцируемой;
    3. её первая производная f'(x) равномерно отделена от нуля;
    4. её вторая производная f»(x) должна быть равномерно ограничена.


    источники:

    http://math.semestr.ru/optim/newton.php

    http://planetcalc.ru/7748/