Решение тригонометрических уравнений 10 класс реферат

Реферат на тему» Виды тригонометрических уравнений»

В данной работе указаны способы решения тригонометрических уравнений

Скачать:

ВложениеРазмер
sposoby_resheniya_trigonometricheskih_uravneniy.doc43.5 КБ

Предварительный просмотр:

Реферат на тему:

“Виды тригонометрических уравнений”

ученицы 11 класса МОУ районной вечерней (сменной) общеобразовательной школы

1. Простейшие тригонометрические уравнения:

Пример 1. 2sin(3x — p/4) -1 = 0.

Решение. Решим уравнение относительно sin(3x — p/4).

sin(3x — p/4) = 1/2, отсюда по формуле решения уравнения sinx = а находим

3х — p/4 = (-1)n arcsin 1/2 + np, nÎZ.

Зх — p/4 = (-1)n p/6 + np, nÎZ; 3x = (-1)n p/6 + p/4 + np, nÎZ;

x = (-1)n p/18 + p/12 + np/3, nÎZ

Если k = 2n (четное), то х = p/18 + p/12 + 2pn/3, nÎZ.

Если k = 2n + 1 (нечетное число), то х = — p/18 + p/12 + ((2pn + 1)p)/3 =

= p/36 + p/3 + 2pn/3 = 13p/36 + 2pn/3, nÎz.

Ответ: х 1 = 5p/6 + 2pn/3,nÎZ, x 2 = 13p/36 + 2pn/3, nÎZ,

или в градусах: х, = 25° + 120 · n, nÎZ; x, = 65° + 120°· n, nÎZ.

Пример 2. sinx + Öз cosx = 1.

Решение. Подставим вместо Öз значение ctg p/6, тогда уравнение примет вид

sinx + ctg p/6 cosx = 1; sinx + (cosp/6)/sinp/6 · cosx = 1;

sinx sin p/6 + cos p/6 cosx = sin p/6; cos(x — p/6) = 1/2.

По формуле для уравнения cosx = а находим

х — p/6 = ± arccos 1/2 + 2pn, nÎZ; x = ± p/3 + p/6 + 2pn, nÎZ;

x1 = p/3 + p/6 + 2pn, nÎZ; x1 = p/2 + 2pn, nÎZ;

x2 = — p/3 + p/6 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ;

Ответ: x1 = p/2 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ.

2. Двучленные уравнения:

Пример 1. sin3x = sinx.

Решение. Перенесем sinx в левую часть уравнения и полученную разность преобразуем в произведение. sin3x — sinx == 0; 2sinx · cos2x = 0.

Из условия равенства нулю произведения получим два простейших уравнения.

sinx = 0 или cos2x = 0.

x1 = pn, nÎZ, x2 = p/4 + pn/2, nÎZ.

Ответ: x1 = pn, nÎZ, x2 = p/4 + pn/2, nÎZ.

3. Разложение на множители:

Пример 1. sinx + tgx = sin2x / cosx

Решение. cosx ¹ 0; x ¹ p/2 + pn, nÎZ.

sinx + sinx/cosx = sin2x / cosx . Умножим обе части уравнения на cosx.

sinx · cosx + sinx — sin2x = 0; sinx(cosx + 1 — sinx) = 0;

sinx = 0 или cosx — sinx +1=0;

x1 = pn, nÎZ; cosx — cos(p/2 — x) = -1; 2sin p/4 · sin(p/4 — x) = -1;

Ö2 · sin(p/4 — x) = -1; sin(p/4 -x) = -1/Ö2; p/4 — x = (-1) n+1 arcsin 1/Ö2 + pn, nÎZ;

x2 = p/4 — (-1) n+1 · p/4 — pn, nÎZ; x2 = p/4 + (-1) n · p/4 + pn, nÎZ.

Если n = 2n (четное), то x = p/2 + pn, если n = 2n + l (нечетное), то x = pn.

Ответ: x1 = pn, nÎZ; x2 = p/4 + (-I)n · p/4 + pn, nÎZ.

4. Способ подстановки

Пример 1. 2 sin2x = 3cosx.

Решение. 2sin2x — 3cosx = 0; 2 (l — cos2x) — 3cosx = 0; 2cos2x + 3cosx — 2 = 0.

Пусть z = cosx, |z| £ 1. 2z2 + 32z — 2=0.

Д = 9+16 = 25; ÖД = 5; z1 = (-3 + 5)/4 = 1/2; z2 = (-3-5)/ 4 = -2 —

-не удовлетворяют условию для z. Тогда решим одно простейшее уравнение:

cosx = 1/2; х = ± p/3 + 2pn, nÎZ. Ответ: х = ± p/3 + 2pn, nÎZ.

5. Однородные уравнения

Однородные тригонометрические уравнения имеют такой вид:

a sin2x + b sinxcosx + c cos2x = 0 (однородное уравнение 2-й степени) или

a sin3x + b sin2x cosx + c sinx cos2x + d sin3x = 0 и т.д.

В этих уравнениях sinx ¹ 0, cosx ¹ 0. Решаются они делением обеих частей уравнения на sin2x или на cos2x и приводятся к уравнениям относительно tgx или ctgx.

Пример 1. Ö3sin2 2x — 2sin4x + Ö3cos22x = 0.

Решение. Разложим sin4x по формуле синуса двойного угла.

Получим уравнение Ö3sin22x — 4sin2xcos2x + Ö3cos22x = 0.

Разделим на cos22x. Уравнение примет вид Ö3 tg22x – 4tg2x + Ö3 = 0.

Пусть z = tg2x, тогда Ö3z2 — 4z + Ö3 = 0; Д = 4; ÖД = 2.

z1 = (4 +2)/2Ö3 = 6/2Ö3 = Ö3; z2 = (4 – 2)/2Ö3 = 1/Ö3

tg2x = Ö3 или tg2x = 1/Ö3

2x = p/3 + pn, nÎZ; 2x = p/6 + pn, nÎZ;

x1 = p/6 + pn/2, nÎZ ; x2 = p/12 + pn/2, nÎz.

Ответ: x1 = p/6 + pn/2, nÎZ ; x2 = p/12 + pn/2, nÎz.

6. Уравнение вида a sinx + b cosx = с

Пример 1. 3sinx + 4cosx = 5.

Решение. Разделим обе части уравнения на 5, тогда 3/5sinx + 4/5cosx = 1.

sinj = 4/5; cosj = 3/5; sin(x+j) = 1, x + j = p/2 + 2pn, nÎZ.

Ответ: x = p/2 — arcsin 4/5 + 2pn, nÎZ.

7. Дробно-рациональные тригонометрические уравнения

Уравнения, содержащие тригонометрические дроби, называются дробно-рациональными уравнениями. В этих уравнениях требуется следить за областью допустимых значений.

Пример 1. 1/(Ö3-tgx) – 1/(Ö3 +tgx) = sin2x

Решение. Область допустимых значений решений этого уравнения

tgx ¹ ± Ö3, х ¹ ± p/8 + pn, nÎZ и х ¹ ± p/2 + pn, nÎZ.

Левую часть уравнения приведем к общему знаменателю, а правую преобразуем с помощью формулы выражения синуса угла через тангенс половинного угла.

(Ö3 + tgx — Ö3 + tgx)/3 — tg2x = 2tgx/ (1 + tg2x); 2tgx / (3 — tg2x) = 2tgx/(1 + tg2x)

Второе уравнение имеет вид

2tg2x — 2 = 0; tg2x = 1; tgx = ±1; x2 = ± p/4 + pn, nÎZ.

Ответ: x1 = pn, nÎZ; х2 = ± p/4 + pn, nÎZ.

8. Иррациональные тригонометрические уравнения

Если в уравнении тригонометрическая функция находится под знаком радикала, то такое тригонометрическое уравнение будет иррациональным. В таких уравнениях следует соблюдать все правила, которыми пользуются при решении обычных иррациональных уравнений (учитывается область допустимых значений как самого уравнения, так и при освобождении от корня четной степени).

Пример 1. Ö( cos2x + Ѕ) + Ö( sin2x + Ѕ) = 2.

Решение. Уравнение имеет смысл при любом х. Возведем обе части уравнения в квадрат.

cos2x + Ѕ + 2 Ö(( cos2x + Ѕ) ( sin2x + Ѕ)) + sin2x + Ѕ = 4

Ö(( cos2x + Ѕ) ( sin2x + Ѕ)) = 1; ( cos2x + Ѕ) ( sin2x + Ѕ) = 1

( Ѕ + Ѕ cos2x + Ѕ)( Ѕ — Ѕ cos2x + Ѕ) = 1; (1 + Ѕ cos2x) (1 — Ѕ cos2x) = 1;

1 – ј cos22x = 1; cos2x=0; x = p/4 + pn/2, nÎz

Ответ: x = p/4 + pn/2, nÎz.

9. Тригонометрические уравнения, в которых под знаком тригонометрической функции находится функция

Особого внимания заслуживают тригонометрические уравнения со сложной зависимостью, когда под знаком тригонометрической функции находится какая-либо другая функция. Эти уравнения требуют дополнительного исследования множества решений.

Пример 1. tg(x2 + 5x)ctg 6=1.

Решение. Запишем уравнение в виде tg(x2+5x)=tg 6. Учитывая, что аргументы равных тангенсов отличаются на свои периоды теп, имеем х2 + 5х = 6 + pn, nÎZ; х2 + 5х — (6+pn) = 0, nÎz;

Д = 25 + 4(6 + pn) = 49 + 4pn, nÎZ; х1,2 = (-5 ± Ö(49 + 4pn))/2, nÎz

Решение имеет смысл, если 49 + 4pn > 0, т.е. n ³ -49/4p; n ³ -3.

“Математика” Р. Л . Вейцман, Л . Р. Вейцман, 2000 г.(стр. 116 — 125)

“Алгебра начала анализа 10-11” А . Н . Колмогоров,

А . М . Абрамов, Ю . П . Дудницын, Б . М . Ивлев, С . И . Шварцбурд, 1993 г.

Реферат на тему: «Решение тригонометрических уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

на тему:
«Решение тригонометрических уравнений»

Тригонометрическое уравнение- это уравнение вида sinx=a, где cos x=a, tgx=a, где a — некоторое действительное число. Решаются они проще всего с помощью тригонометрического круга

Тригонометрические уравнения решаются в два этапа: преобразование уравнения для получения его простейшего вида и решение полученного простейшего тригонометрического уравнения. Для тригонометрических уравнений не существует единого метода решения.

Необходимо помнить следующие моменты при решении тригонометрических уравнений:

1. При решении тригонометрических уравнений нельзя сокращать на

2. При решении тригонометрических уравнений необходимо учитывать

область допустимых значений (О.Д.З.).

3. При возведении обеих частей уравнения в четную степень могут

появляться посторонние корни.

4.Потеря корней уравнения может произойти и от замены

тригонометрических функций через тангенс

Методы решения тригонометрических уравнений.

Алгебраический метод ( метод замены переменной и подстановки ).

Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево: sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в левой части уравнения:

3. Приведение к однородному уравнению.

Уравнение называется однородным относительно sin и cos, если все его члены одной и той же степени относительно sin и cos одного и того же угла. Чтобы решить однородное уравнение, надо:

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение : 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения : y1 = -1, y2 = -3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

+ 5 sin ² ( x / 2 ) = 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

a sin x + b cos x = c ,

где a, b, c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса: абсолютное значение каждого из них не больше 1, а сумма их квадратов равна 1. Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение принимает вид:

6. Преобразование произведения в сумму.

Преобразуем левую часть в сумму:

cos 4x – cos 8x = cos 4x ,

x = p / 16 + pk / 8 .

7. Универсальная подстановка.

Рассмотрим этот метод на примере.

П р и м е р . 3 sin x – 4 cos x = 3 .

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 945 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 687 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 315 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 590 320 материалов в базе

Материал подходит для УМК

«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (углублённый уровень)», Муравин Г.К., Муравина О.В.

26. Решение тригонометрических уравнений

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

  • 24.11.2020
  • 266
  • 3

  • 24.11.2020
  • 89
  • 0

  • 24.11.2020
  • 691
  • 19

  • 24.11.2020
  • 394
  • 6

  • 24.11.2020
  • 291
  • 2

  • 24.11.2020
  • 350
  • 2

  • 24.11.2020
  • 305
  • 4

  • 24.11.2020
  • 624
  • 4

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 24.11.2020 1246
  • DOCX 34 кбайт
  • 38 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Данилова Любовь Александровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 7 лет и 3 месяца
  • Подписчики: 30
  • Всего просмотров: 144947
  • Всего материалов: 238

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Университет им. Герцена и РАО создадут портрет современного школьника

Время чтения: 2 минуты

Ленобласть распределит в школы прибывающих из Донбасса детей

Время чтения: 1 минута

Школьник из Сочи выиграл международный турнир по шахматам в Сербии

Время чтения: 1 минута

В ростовских школах рассматривают гибридный формат обучения с учетом эвакуированных

Время чтения: 1 минута

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

Каждый второй ребенок в школе подвергался психической агрессии

Время чтения: 3 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Способы решения тригонометрических уравнений. 10-й класс

Разделы: Математика

Класс: 10

«Уравнения будут существовать вечно».

Цели урока:

  • Образовательные:
    • углубление понимания методов решения тригонометрических уравнений;
    • сформировать навыки различать, правильно отбирать способы решения тригонометрических уравнений.
  • Воспитательные:
    • воспитание познавательного интереса к учебному процессу;
    • формирование умения анализировать поставленную задачу;
    • способствовать улучшению психологического климата в классе.
  • Развивающие:
    • способствовать развитию навыка самостоятельного приобретения знаний;
    • способствовать умению учащихся аргументировать свою точку зрения;

Оборудование: плакат с основными тригонометрическими формулами, компьютер, проектор, экран.

1 урок

I. Актуализация опорных знаний

Устно решить уравнения:

1) cosx = 1;
2) 2 cosx = 1;
3) cosx = –;
4) sin2x = 0;
5) sinx = –;
6) sinx = ;
7) tgx = ;
8) cos 2 x – sin 2 x = 0

1) х = 2к;
2) х = ± + 2к;
3) х =± + 2к;
4) х = к;
5) х = (–1) + к;
6) х = (–1) + 2к;
7) х = + к;
8) х = + к; к Z.

II. Изучение нового материала

– Сегодня мы с вами рассмотрим более сложные тригонометрические уравнения. Рассмотрим 10 способов их решения. Далее будет два урока для закрепления, и на следующий урок будет проверочная работа. На стенде «К уроку» вывешены задания, аналогичные которым будут на проверочной работе, надо их прорешать до проверочной работы. (Накануне, перед проверочной работой, вывесить на стенде решения этих заданий).

Итак, переходим к рассмотрению способов решения тригонометрических уравнений. Одни из этих способов вам, наверное, покажутся трудными, а другие – лёгкими, т.к. некоторыми приёмами решения уравнений вы уже владеете.

Четверо учащихся класса получили индивидуальное задание: разобраться и показать вам 4 способа решения тригонометрических уравнений.

(Выступающие учащиеся заранее подготовили слайды. Остальные учащиеся класса записывают основные этапы решения уравнений в тетрадь.)

1 ученик: 1 способ. Решение уравнений разложением на множители

sin 4x = 3 cos 2x

Для решения уравнения воспользуемся формулой синуса двойного угла sin 2 = 2 sin cos
2 sin 2x cos 2x – 3 cos 2x = 0,
cos 2x (2 sin 2x – 3) = 0. Произведение этих множителей равно нулю, если хотя бы один из множителей будет равен нулю.

2x = + к, к Z или sin 2x = 1,5 – нет решений, т.к | sin| 1
x = + к; к Z.
Ответ: x = + к , к Z.

2 ученик. 2 способ. Решение уравнений преобразованием суммы или разности тригонометрических функций в произведение

cos 3x + sin 2x – sin 4x = 0.

Для решения уравнения воспользуемся формулой sin– sin = 2 sin сos

cos 3x + 2 sin сos = 0,

сos 3x – 2 sin x cos 3x = 0,

cos 3x (1 – 2 sinx) = 0. Полученное уравнение равносильно совокупности двух уравнений:

Множество решений второго уравнения полностью входит во множество решений первого уравнения. Значит

Ответ:

3 ученик. 3 способ. Решение уравнений преобразованием произведения тригонометрических функций в сумму

sin 5x cos 3x = sin 6x cos2x.

Для решения уравнения воспользуемся формулой

Ответ:

4 ученик. 4 способ. Решение уравнений, сводящихся к квадратным уравнениям

3 sin x – 2 cos 2 x = 0,
3 sin x – 2 (1 – sin 2 x ) = 0,
2 sin 2 x + 3 sin x – 2 = 0,

Пусть sin x = t, где | t |. Получим квадратное уравнение 2t 2 + 3t – 2 = 0,

. Таким образом . не удовлетворяет условию | t |.

Значит sin x = . Поэтому .

Ответ:

III. Закрепление изученного по учебнику А. Н. Колмогорова

1. № 164 (а), 167 (а) (квадратное уравнение)
2. № 168 (а) (разложение на множители)
3. № 174 (а) (преобразование суммы в произведение)
4. (преобразование произведения в сумму)

(В конце урока показать решение этих уравнений на экране для проверки)

№ 164 (а)

2 sin 2 x + sin x – 1 = 0.
Пусть sin x = t, | t | 1. Тогда
2 t 2 + t – 1 = 0, t = – 1, t= . Откуда

Ответ: –.

№ 167 (а)

3 tg 2 x + 2 tg x – 1 = 0.

Пусть tg x = 1, тогда получим уравнение 3 t 2 + 2 t – 1 = 0.

Ответ:

№ 168 (а )

Ответ:

№ 174 (а )

Ответ:

Решить уравнение:

Ответ:

2 урок (урок-лекция)

IV. Изучение нового материала (продолжение)

– Итак, продолжим изучение способов решения тригонометрических уравнений.

5 способ. Решение однородных тригонометрических уравнений

Уравнения вида a sin x + b cos x = 0, где a и b – некоторые числа, называются однородными уравнениями первой степени относительно sin x или cos x.

sin x – cos x = 0. Разделим обе части уравнения на cos x. Так можно сделать, потери корня не произойдёт, т.к. , если cos x = 0, то sin x = 0. Но это противоречит основному тригонометрическому тождеству sin 2 x + cos 2 x = 1.

Получим tg x – 1 = 0.

Ответ:

Уравнения вида a sin 2 x + bcos 2 x + c sin x cos x = 0 , где a, b, c –некоторые числа, называются однородными уравнениями второй степени относительно sin x или cos x.

sin 2 x – 3 sin x cos x + 2 cos 2 = 0. Разделим обе части уравнения на cos x, при этом потери корня не произойдёт, т.к. cos x = 0 не является корнем данного уравнения.

tg 2 x – 3tg x + 2 = 0.

Пусть tg x = t. D = 9 – 8 = 1.

тогда Отсюда tg x = 2 или tg x = 1.

В итоге x = arctg 2 + , x =

Ответ: arctg 2 + ,

Рассмотрим ещё одно уравнение: 3 sin 2 x – 3 sin x cos x + 4 cos 2 x = 2.
Преобразуем правую часть уравнения в виде 2 = 2 · 1 = 2 · (sin 2 x + cos 2 x). Тогда получим:
3sin 2 x – 3sin x cos x + 4cos 2 x = 2 · (sin 2 x + cos 2 x),
3sin 2 x – 3sin x cos x + 4cos 2 x – 2sin 2 x – 2 cos 2 x = 0,
sin 2 x – 3sin x cos x + 2cos 2 x = 0. (Получили 2 уравнение, которое уже разобрали).

Ответ: arctg 2 + k,

6 способ. Решение линейных тригонометрических уравнений

Линейным тригонометрическим уравнением называется уравнение вида a sin x + b cos x = с, где a, b, c – некоторые числа.

Рассмотрим уравнение sin x + cos x = – 1.
Перепишем уравнение в виде:

Учитывая, что и, получим:

Ответ:

7 способ. Введение дополнительного аргумента

Выражение a cos x + b sin x можно преобразовать:

.

(это преобразование мы уже ранее использовали при упрощении тригонометрических выражений)

Введём дополнительный аргумент – угол такой, что

Тогда

Рассмотрим уравнение: 3 sinx + 4 cosx = 1.

Учтём, что . Тогда получим

0,6 sin x + 0,8 cosx = 1. Введём дополнительный аргумент – угол такой, что , т.е. = arcsin 0,6. Далее получим

Ответ: – arcsin 0,8 + +

8 способ. Уравнения вида Р

Такого рода уравнения удобно решать при помощи введения вспомогательной переменной t = sin x ± cosx. Тогда 1 ± 2 sinx cosx = t 2 .

Решить уравнение: sinx + cosx + 4 sinx cosx – 1 = 0.

Введём новую переменную t = sinx + cosx, тогда t 2 = sin 2 x + 2sin x cos x + cos 2 = 1 + 2 sin x cos x Откуда sin x cos x = . Следовательно получим:

t + 2 (t 2 – 1) – 1 = 0.
2 t 2 + t – 2 – 1 = 0,
2 t 2 + t – 3 = 0..Решив уравнение, получим = 1, =.

sinx + cosx = 1 или sinx + cosx =

Ответ:

9 способ. Решение уравнений, содержащих тригонометрические функции под знаком радикала.

Решить уравнение:

В соответствии с общим правилом решения иррациональных уравнений вида, запишем систему, равносильную исходному уравнению:

Решим уравнение 1 – cos x = 1 – cos 2 x.

1 – cos x = 1 – cos 2 x,
1 – cos x – (1 – cos x) (1 + cos x) = 0,
(1 – cos x) (1 – 1 – cos x) = 0,
– (1 – cos x) cos x = 0.

Условию удовлетворяют только решения

Ответ:

10 способ. Решение уравнений с использованием ограниченности тригонометрических функций y = sin x и y = cos x.

Решить уравнение: sin x + sin 9x = 2.
Так как при любых значениях х sin x 1, то данное уравнение равносильно системе:

Решение системы

Ответ:

V. Итог урока

Таким образом мы сегодня рассмотрели 10 различных способов решения тригонометрических уравнений. Безусловно, многие из приведённых задач могут быть решены несколькими способами.

(Пятерым наиболее подготовленным учащимся , а также всем желающим дать индивидуальное творческое задание: найти различные способы решения тригонометрического уравнения sinx + cosx = 1 )

Домашнее задание: № 164 -170 (в, г).


источники:

http://infourok.ru/referat-na-temu-reshenie-trigonometricheskih-uravnenij-4606914.html

http://urok.1sept.ru/articles/593441