Решение тригонометрических уравнений арксинус арккосинус

Алгебра

План урока:

Арккосинус

Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:

Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.

Задание. Решите ур-ние

Задание. Запишите корни ур-ния

Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.

Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:

Ответ: 7π/3 и 8π/3.

Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние

Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:

Наконец, решениями ур-ния

Решение уравнений tgx = a и ctgx = a

Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):

Таким образом, у ур-ния tgx = a существует очевидное решение

Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:

Задание. Решите ур-ние

Задание. Запишите формулу корней ур-ния

Далее рассмотрим ур-ние вида

Задание. Решите ур-ние

Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии

Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.

Основные формулы с арксинусом, арккосинусом, арктангенсом и арккотангенсом

Формулы с обратными тригонометрическими функциями: arcsin, arccos, arctg и arcctg

Ранее мы рассматривали обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс. Как и в случае с другими функциями, между ними существуют связи и зависимости, реализуемые в виде формул, которые можно использовать для решения задач.

Сейчас мы будем рассматривать основные формулы с использованием этих функций: какие они бывают, на какие группы их можно разделить, как их доказать и как решать задачи с их помощью.

Формулы котангенса арккотангенса, тангенса арктангенса, синуса арксинуса и косинуса арккосинуса

Для начала сгруппируем формулы, в которых содержатся основные свойства обратных тригонометрических функций. Мы уже обсуждали и доказывали их ранее, а здесь приведем, чтобы логика объяснения была более понятной и все формулы были в одной статье.

д л я α ∈ — 1 , 1 sin ( a r c c i s α ) = α , cos ( a r c cos α ) = α , д л я α ∈ ( — ∞ , ∞ ) t g ( a r c t g α ) = α , c t g ( a r c c t g α ) = α

Указанное в них легко сформулировать из самих определений обратных тригонометрических функций числа. Если вы забыли, как найти, например, тангенс арктангенса, все можно посмотреть в этой формуле.

Формулы арккотангенса котангенса, арктангенса тангенса и арксинуса синуса и арккосинуса косинуса

д л я — π 2 ≤ α ≤ π 2 a r c sin ( sin α ) = α , д л я 0 ≤ α ≤ π arccos ( cos α ) = α , д л я — π 2 α π 2 arctg ( tg α ) = α , д л я 0 α π arcctg ( ctg α ) = α

Здесь все также более-менее очевидно, как и в предыдущем пункте: эти формулы можно вывести из определений арксинуса, арккосинуса и др. Единственное, на что нужно обратить пристальное внимание: они будут верны только в том случае, если a (число или угол) будут входить в указанный предел. В противном случае расчет по формуле будет ошибочен, и применять ее нельзя.

Как соотносятся между собой арксинусы, арккосинусы, арктангенсы и арккотангенсы противоположных чисел

В этом блоке мы сформулируем важное утверждение:

Обратные тригонометрические функции отрицательного числа можно выразить через арксинус, арккосинус, арктангенс и арккотангенс противоположного ему положительного числа.

д л я α ∈ — 1 , 1 a r c c i s ( — α ) = — a r c sin α , a r c cos ( — α ) = π — a r c cos α , д л я α ∈ ( — ∞ , ∞ ) a r c t g ( — α ) = — a r c t g α , a r c c t g ( — α ) = π — arcctg α

Таким образом, если в расчетах нам встречаются эти функции для отрицательных чисел, мы можем от них избавиться, преобразовав их в аркфункции положительных чисел, с которыми иметь дело проще.

Формулы суммы: арксинус + арккосинус, арктангенс + арккотангенс

Они выглядят следующим образом:

д л я α ∈ — 1 , 1 a r c c i s α + a r c cos α = π 2 , д л я α ∈ ( — ∞ , ∞ ) a r c t g α + a r c c t g α = π 2

Из написанного видно, что арксинус некоторого числа можно вывести с помощью его арккосинуса, и наоборот. С арктангенсом и арккотангенсом аналогично – они соотносятся между собой аналогичным образом.

Формулы связи между прямыми и обратными тригонометрическими функциями

Знать связи между прямыми функциями и их аркфункциями очень важно для решения многих практических задач. Как же быть, если у нас есть необходимость вычислить, к примеру, тангенс арксинуса? Ниже приведен список основных формул для этого, которые полезно выписать себе.

— 1 ≤ α ≤ 1 , sin ( a r c sin α ) = α— 1 ≤ α ≤ 1 , sin ( a r c cos α ) = 1 — α 2— ∞ ≤ α ≤ + ∞ , sin ( a r c t g α ) = α 1 + α 2— ∞ ≤ α ≤ + ∞ , sin ( a r c c t g α ) = 1 1 + α 2
— 1 ≤ α ≤ 1 , cos ( a r c sin α ) = 1 — α 2— 1 ≤ α ≤ 1 , cos ( a r c cos α ) = α— ∞ ≤ α ≤ + ∞ , cos ( a r c t g α ) = 1 1 + α 2— ∞ ≤ α ≤ + ∞ , cos ( a r c c t g α ) = 1 1 + α 2
— 1 α 1 , t g ( a r c sin α ) = α 1 — α 2α ∈ ( — 1 , 0 ) ∪ ( 0 , 1 ) , t g ( a r c cos α ) = 1 — α 2 α— ∞ ≤ α ≤ + ∞ , t g ( a r c t g α ) = αα ≠ 0 , t g ( a r c c t g α ) = 1 α
α ∈ ( — 1 , 0 ) ∪ ( 0 , 1 ) , c t g ( a r c sin α ) = 1 — α 2 α— 1 α 1 , c t g ( a r c cos α ) = α 1 — α 2α ≠ 0 , c t g ( a r c t g α ) = 1 α— ∞ ≤ α ≤ + ∞ , c t g ( a r c c t g α ) = α

Теперь разберем примеры, как они применяются в задачах.

Вычислите косинус арктангенса из 5 .

Решение

У нас для этого есть подходящая формула следующего вида: cos ( a r c t g α ) = 1 1 + α 2

Подставляем нужное значение: cos ( a r c t g 5 ) = 1 1 + ( 5 ) 2 = 2 6

Вычислить синус арккосинуса 1 2 .

Решение

Для этого нам понадобится формула: sin ( a r c cos α ) = 1 — a 2

Подставляем в нее значения и получаем: sin ( a r c cos 1 2 ) = 1 — ( 1 2 ) 2 = 3 2

Обратите внимание, что непосредственные вычисления приводят к аналогичному ответу: sin ( a r c cos 1 2 ) = sin π 3 = 3 2

Если вы забыли, как правильно вычислять значения прямых и обратных функций, вы всегда можете вернуться к нашим предыдущим материалам, где мы разбирали это.

Доказательства формул синусов арккосинуса, арккотангенса и арктангенса

Для того, чтобы наглядно вывести полученные формулы, нам понадобятся основные тригонометрические тождества и собственно формулы основных обратных функций — косинуса арккосинуса и др. Мы их уже выводили ранее, поэтому тратить время на их доказательства не будем. Начнем сразу с формул синусов арккосинуса, арккотангенса и арктангенса. Используя тождество, получим:

sin 2 α + cos 2 α = 1 1 + c t g 2 α = 1 sin 2 α

Вспомним, что t g α · c t g α = 1 . Из этого можно получить:

sin α = 1 — cos 2 α , 0 ≤ α ≤ π sin α = t g α 1 + t g 2 α , — π 2 α π 2 sin α = 1 1 + c t g 2 α , 0 α π

У нас получилось, что мы выразили синус через необходимые аркфункции при заданном условии.

Теперь в первой формуле вместо a мы добавим arccos a. Итог — формула синуса арккосинуса.

Далее во вторую вместо a ставим arctg a. Это формула синуса арктангенса.

Аналогично с третьей – если мы добавим в нее arcctg a, будет формула синуса арктангенса.

Все наши расчеты можно сформулировать более емко:

  1. sin α = 1 — cos 2 α , 0 ≤ α ≤ π

Следовательно, sin ( a r c cos α ) = 1 — cos 2 ( a r c cos α ) = 1 — a 2

  1. sin α = t g α 1 + t g α , — π 2 α π 2 ,

Следовательно, sin ( a r c t g α ) = t g ( a r c t g α ) 1 + t g 2 ( a r c t g α ) = α 1 + α 2

  1. sin α = 1 1 + c t g 2 α , 0 α π

Следовательно, sin ( a r c t g α ) = 1 1 + t g 2 ( a r c t g α ) = 1 1 + α 2

Выводим формулы косинуса арксинуса, косинуса арктангенса и косинуса арккотангенса.

Их мы выведем по имеющемуся шаблону:

  1. Из cos α = 1 — sin 2 α , — π 2 ≤ α ≤ π 2 следует, что

cos ( a r c sin α ) = 1 — sin 2 ( a r c sin α ) = 1 — a 2

  1. Из cos α = 1 1 + t g 2 α , — π 2 α π 2 следует, что
  2. Из cos α = c t g α 1 + c t g 2 α , 0 α π cos ( a r c t g α ) = 1 1 + t g 2 ( a r c t g α ) = 1 1 + α 2

следует, что cos ( a r c t g α ) = c t g ( a r c c t g α ) 1 + c t g 2 ( a r c c t g α ) = α 1 + α 2

Доказательства формул тангенсов арксинуса, арккосинуса и арккотангенса

  1. Исходим из t g α = sin α 1 — sin 2 α , — π 2 α π 2 . Получаем t g ( a r c sin α ) = sin ( a r c sin α ) 1 — sin 2 ( a r c sin α ) = α 1 — α 2 при условии, что — 1 α 1 .
  2. Исходим из t g α = 1 — cos 2 α cos α , α ∈ [ 0 , π 2 ) ∪ ( π 2 , π ] , получаем

t g ( a r c cos α ) = 1 — cos 2 ( a r c cos α ) cos ( a r c c os α ) = 1 — α 2 α при условии α ∈ ( — 1 , 0 ) ∪ ( 0 , 1 ) .

  1. Исходим из t g α = 1 c t g α , α ∈ ( 0 , π 2 ) ∪ ( π 2 , π ) , получаем t g ( a r c c t g α ) = 1 c t g ( a r c c t g α ) = 1 α при условии, что α ≠ 0 .

Теперь нам нужны формулы котангенсов арксинуса, арккосинуса и арктангенса. Вспомним одно из тригонометрических равенств:

c t g α = 1 t g α

Используя его, мы можем сами вывести необходимые формулы, используя формулы тангенса арксинуса, тангенса арккосинуса и тангенса арктангенса. Для этого понадобится поменять в них местами числитель и знаменатель.

Как выразить арксинус через арккосинус, арктангенс и арккотангенс и так далее

Мы связали между собой прямые и обратные тригонометрические функции. Полученные формулы дадут нам возможность связать и одни обратные функции с другими, то есть выразить одни аркфункции через другие аркфункции. Разберем примеры.

Здесь мы можем заменить арксинус на арккосинус, арктангенс и арккотангенс соответственно, и получить искомую формулу:

a r c sin α = a r c cos 1 — α 2 , 0 ≤ α ≤ 1 — a r c cos 1 — a 2 , — 1 ≤ α 0 a r c sin α = a r c t g α 1 — α 2 , — 1 α 1 a r c sin α = a r c c t g 1 — α 2 α , 0 α ≤ 1 a r c c t g 1 — α 2 α — π , — 1 ≤ α ≤ 0

А так мы выразим арккосинус через остальные обратные функции:

a r c cos α = a r c sin 1 — α 2 , 0 ≤ α ≤ 1 π — arcsin 1 — α 2 , — 1 ≤ α 0 a r c cos α = a r c t g 1 — α 2 α , 0 α ≤ 1 π + arctg 1 — α 2 α , — 1 α 0 arccosα = arcctg α 1 — α 2 , — 1 α 1

Формула выражения арктангенса:

a r c t g α = a r c sin α 1 + α 2 , — ∞ α + ∞ a r c t g α = a r c cos 1 1 + α 2 , α ≥ 0 — a r c cos 1 1 + α 2 , α 0 a r c t g α = a r c c t g 1 α , α ≠ 0

Последняя часть – выражение арккотангенса через другие обратные функции:

a r c c t g α = a r c sin 1 1 + α 2 , α ≥ 0 π — a r c sin 1 1 + α 2 , α 0 a r c c t g α = a r c cos α 1 + α 2 , — ∞ α + ∞ a r c c t g α = a r c t g 1 α , α ≠ 0

Теперь попробуем доказать их, опираясь на основные определения обратных функций и ранее выведенных формул.

Возьмём a r c sin α = a r c t g α 1 — α 2 , — 1 α 1 и постараемся вывести доказательство.

Мы знаем, что a r c t g α 1 — α 2 — это число, величина которого составляет от минус половины пи до плюс половины пи. Из формулы синуса арктангенса получим:

sin ( a r c t g α 1 — α 2 ) = α 1 — α 2 1 + ( α 1 — α 2 ) 2 = α 1 — α 2 1 + α 2 1 — α 2 = α 1 — α 2 1 + α 2 1 — α 2 = α 1 — α 2 1 1 — α 2 = α

Получается, что a r c t g α 1 — α 2 при условии 1 a 1 – это и есть арксинус числа a .

Вывод: a r c sin a = a r c t g a 1 — a 2 , — 1 a 1

Прочие формулы доказываются по аналогии.

В завершение разберем один пример применения формул на практике.

Условие Вычислить синус арккотангенса минус корня из 3 .

Решение

Нам понадобится формула выражения арккотангенса через арксинус: a r c c t g α = a r c sin 1 1 + a 2 , α ≥ 0 π — arcsin 1 1 + a 2 , α 0
Подставим в нее α = — 3 и получим ответ – 1 2 . Непосредственное вычисление дало бы нам те же результаты: sin ( a r c c t g ( — 3 ) ) = sin 5 π 6 = 1 2 Для решения задачи можно взять и другую формулу, выражающую синус через котангенс: sin α = 1 1 + c t g 2 α , 0 α π

В итоге у нас бы вышло: sin ( a r c c t g ( — 3 ) ) = 1 1 + c t g 2 ( a r c c t g ( — 3 ) ) = 1 1 + ( — 3 ) 2 = 1 2

Или возьмем формулу синуса арккотангенса и получим тот же ответ: sin ( a r c c t g α ) = 1 1 + α 2 sin ( a r c c t g ( — 3 ) ) = 1 1 + ( — 3 ) 2 = 1 2

Прочие формулы с обратными функциями

Мы рассмотрели самые основные формулы, которые понадобятся вам при решении задач. Однако это не все формулы с аркфункциями: есть и ряд других, специфичных, которые употребляются нечасто, но все же их знание может быть полезно. Запоминать их особого смысла нет: проще вывести их тогда, когда они нужны.

Разберем одну из них, называемую формулой половинного угла. Она выглядит следующим образом:

sin 2 α 2 = 1 — cos α 2

Если угол альфа при этом больше нуля, но меньше числа пи, то у нас выходит:

sin α 2 = 1 — cos α 2

Учитывая данное условие, заменяем упомянутый угол на arccos. В итоге наша предварительная формула выглядит так:

sin a r c cos α 2 = 1 — cos ( a r c cos α ) 2 ⇔ sin a r c cos α 2 = 1 — α 2

Отсюда мы выводим итоговую формулу, в которой арксинус выведен через арккосинус:

a r c cos α 2 = a r c sin 1 — α 2

Мы перечислили не все связи, которые имеются между обратными тригонометрическими функциями, а лишь наиболее употребляемые из них. Важно подчеркнуть, что ценность имеют не столько сами сложные формулы, что мы привели в статье: заучивать их наизусть не нужно. Гораздо важнее уметь самому делать нужные преобразования, и тогда сложные вычисления не потребуется хранить в голове.

В продолжение темы в следующей статье мы рассмотрим преобразование выражений с арксинусом, арккосинусом, арктангенсом и арккотангенсом.

Все про арксинус, арккосинус, арктангенс, арккотангенс

Функции sin, cos, tg и ctg всегда сопровождаются арксинусом, арккосинусом, арктангенсом и арккотангенсом. Одно является следствием другого, а пары функций одинаково важны для работы с тригонометрическими выражениями.

Рассмотрим рисунок единичной окружности, на котором графически отображено значений тригонометрических функций.

Если вычислить arcs OA, arcos OC, arctg DE и arcctg MK, то все они будут равны значению угла α. Формулы, приведенные ниже, отражают взаимосвязь основных тригонометрических функций и соответствующих им арков.

Арксинус

Чтобы больше понять о свойствах арксинуса, необходимо рассмотреть его функцию. График y = arcsin x имеет вид асимметричной кривой, проходящей через центр координат.

  1. Так как f(x) нечетная, то arcsin (- x) = – arcsin x.
  2. Y = 0 при x = 0.
  3. На всей своей протяженности график возрастает.

Если сопоставить графики sin и arcsin, у двух тригонометрических функций можно найти общие закономерности.

Арккосинус

Arccos числа а – это значение угла α, косинус которого равен а.

Кривая y = arcos x зеркально отображает график arcsin x, с той лишь разницей, что проходит через точку π/2 на оси OY.

Рассмотрим функцию арккосинуса более подробно:

  1. Функция определена на отрезке [-1; 1].
  2. ОДЗ для arccos – [0, π].
  3. График целиком расположен в I и II четвертях, а сама функция не является ни четной, ни нечетной.
  4. Y = 0 при x = 1.
  5. Кривая убывает на всей своей протяженности. Некоторые свойства арккосинуса совпадают с функцией косинуса.

Некоторые свойства арккосинуса совпадают с функцией косинуса.

Возможно, школьникам покажется излишним такое «подробное» изучение «арков». Однако, в противном случае, некоторые элементарные типовые задания ЕГЭ могут ввести учащихся в тупик.

Задание 1. Укажите функции изображенные на рисунке.

Ответ: рис. 1 – 4, рис.2 – 1.

В данном примере упор сделан на мелочах. Обычно ученики очень невнимательно относятся к построению графиков и внешнему виду функций. Действительно, зачем запоминать вид кривой, если ее всегда можно построить по расчетным точкам. Не стоит забывать, что в условиях теста время, затраченное на рисунок для простого задания, потребуется для решения более сложных заданий.

Арктангенс

Arctg числа a – это такое значение угла α, что его тангенс равен а.

Если рассмотреть график арктангенса, можно выделить следующие свойства:

  1. График бесконечен и определен на промежутке (- ∞; + ∞).
  2. Арктангенс нечетная функция, следовательно, arctg (- x) = – arctg x.
  3. Y = 0 при x = 0.
  4. Кривая возрастает на всей области определения.

Приведем краткий сравнительный анализ tg x и arctg x в виде таблицы.

Арккотангенс

Arcctg числа a – принимает такое значение α из интервала (0; π), что его котангенс равен а.

Свойства функции арккотангенса:

  1. Интервал определения функции – бесконечность.
  2. Область допустимых значений – промежуток (0; π).
  3. F(x) не является ни четной, ни нечетной.
  4. На всем своем протяжении график функции убывает.

Сопоставить ctg x и arctg x очень просто, нужно лишь сделать два рисунка и описать поведение кривых.

Задание 2. Соотнести график и форму записи функции.

Если рассуждать логически, из графиков видно, что обе функции возрастающие. Следовательно, оба рисунка отображают некую функцию arctg. Из свойств арктангенса известно, что y=0 при x = 0,

Ответ: рис. 1 – 1, рис. 2 – 4.

Тригонометрические тождества arcsin, arcos, arctg и arcctg

Ранее нами уже была выявлена взаимосвязь между арками и основными функциями тригонометрии. Данная зависимость может быть выражена рядом формул, позволяющих выразить, например, синус аргумента, через его арксинус, арккосинус или наоборот. Знание подобных тождеств бывает полезным при решении конкретных примеров.

Также существуют соотношения для arctg и arcctg:

Еще одна полезная пара формул, устанавливает значение для суммы значений arcsin и arcos, а также arcctg и arcctg одного и того же угла.

Примеры решения задач

Задания по тригонометрии можно условно разделить на четыре группы: вычислить числовое значение конкретного выражения, построить график данной функции, найти ее область определения или ОДЗ и выполнить аналитические преображения для решения примера.

При решении первого типа задач необходимо придерживаться следующего плана действий:

При работе с графиками функций главное – это знание их свойств и внешнего вида кривой. Для решения тригонометрических уравнений и неравенств необходимы таблицы тождеств. Чем больше формул помнит школьник, тем проще найти ответ задания.

Допустим в ЕГЭ необходимо найти ответ для уравнения типа:

Если правильно преобразовать выражение и привести к нужному виду, то решить его очень просто и быстро. Для начала, перенесем arcsin x в правую часть равенства.

Если вспомнить формулу arcsin (sin α) = α, то можно свести поиск ответов к решению системы из двух уравнений:

Ограничение на модель x возникло, опять таки из свойств arcsin: ОДЗ для x [-1; 1]. При а ≠0, часть сиcтемы представляет собой квадратное уравнение с корнями x1 = 1 и x2 = – 1/a. При a = 0, x будет равен 1.


источники:

http://zaochnik.com/spravochnik/matematika/trigonometrija/osnovnye-formuly-s-arksinusom-arkkosinusom-arktang/

http://karate-ege.ru/arksinus-arkkosinus-arktangens-arkkotangens/