Решение тригонометрических уравнений через арксинус

Арксинус. Решение простейших уравнений с синусом. Часть 2

Арксинусом числа \(a\) (\(a∈[-1;1]\)) называют число \(x∈[-\frac<π><2>;\frac<π><2>]\) синус которого равен \(a\) т.е.

Проще говоря, арксинус обратен синусу.

На круге это выглядит так:

Как вычислить арксинус?

Чтобы вычислить арксинус — нужно ответить на вопрос: синус какого числа (лежащего в пределах от \(-\frac<π><2>\) до \(\frac<π><2>\) ) равен аргументу арксинуса?

Например, вычислите значение арксинуса:

а) Синус какого числа равен \(-\frac<1><2>\)? Или в более точной формулировке можно спросить так: если \(\sin ⁡x=-\frac<1><2>\), то чему равен \(x\)? Причем, обратите внимание, нам нужно такое значение, которое лежит между \(-\frac<π><2>\) и \(\frac<π><2>\). Ответ очевиден:

б) Синус какого числа равен \(\frac<\sqrt<3>><2>\)? Кто-то вспоминает тригонометрический круг, кто-то таблицу, но в любом случае ответ \(\frac<π><3>\).

в) Синус от чего равен \(-1\)?
Иначе говоря, \(\sin ⁡x=-1\), \(x=\) ?

Тригонометрический круг со всеми стандартными арксинусами:

Зачем нужен арксинус? Решение уравнения \(\sin x=a\)

Чтобы понять зачем придумали арксинус, давайте решим уравнение: \(\sin ⁡x=\frac<1><2>\).

Это не вызывает затруднений:

Внимание! Если вдруг затруднения всё же были, то почитайте здесь о решении простейших уравнений с синусом.

А теперь решите уравнение: \(\sin ⁡x=\frac<1><3>\).

Что тут будет ответом? Не \(\frac<π><6>\), не \(\frac<π><4>\), даже не \(\frac<π><7>\) — вообще никакие привычные числа не подходят, однако при этом очевидно, что решения есть. Но как их записать?

Вот тут-то на помощь и приходит арксинус! Значение правой точки равно \(\arcsin⁡\frac<1><3>\), потому что известно, что синус равен \(\frac<1><3>\). Длина дуги от \(0\) до правой точки тогда тоже будет равна \(\arcsin⁡\frac<1><3>\). Тогда чему равно значение второй точки? С учетом того, что правая точка находится на расстоянии равному \(\arcsin⁡\frac<1><3>\) от \(π\), то её значение составляет \(π- \arcsin⁡\frac<1><3>\).

Ок, значение этих двух точек нашли. Теперь запишем полный ответ: \( \left[ \beginx=\arcsin \frac<1><3>+2πn, n∈Z\\ x=π-\arcsin \frac<1><3>+2πl, l∈Z\end\right.\) Без арксинусов решить уравнение \(\sin ⁡x=\frac<1><3>\) не получилось бы. Как и уравнение \(\sin ⁡x=0,125\), \(\sin ⁡x=-\frac<1><9>\), \(\sin⁡ x=\frac<1><\sqrt<3>>\) и многие другие. Фактически без арксинуса мы можем решать только \(9\) простейших уравнений с синусом:

С арксинусом – бесконечное количество.

Пример. Решите тригонометрическое уравнение: \(\sin ⁡x=\frac<1><\sqrt<3>>\).
Решение:

Пример. Решите тригонометрическое уравнение: \(\sin ⁡x=\frac<1><\sqrt<2>>\).

Решение:
Кто поторопился написать ответ \( \left[ \beginx=\arcsin \frac<1><\sqrt<2>>+2πn, n∈Z\\ x=π-\arcsin \frac<1><\sqrt<2>>+2πl, l∈Z\end\right.\), тот на ЕГЭ потеряет 2 балла. Дело в том, что в отличии от прошлых примеров \(\arcsin⁡ \frac<1><\sqrt<2>>\) — вычислимое значение, но чтобы это стало очевидно нужно избавиться от иррациональности в знаменателе аргумента. Для этого умножим и числитель и знаменатель дробь на корень из двух \(\frac<1><\sqrt<2>> = \frac<1 \cdot \sqrt<2>> <\sqrt<2>\cdot \sqrt<2>>= \frac<\sqrt<2>><2>\). Таким образом, получаем:

Значит в ответе вместо арксинусов нужно написать \(\frac<π><4>\).

Пример. Решите тригонометрическое уравнение: \(\sin ⁡x=\frac<7><6>\).

Решение:
И вновь тот, кто поторопился написать \( \left[ \beginx= \arcsin \frac<7><6>+2πn, n∈Z\\ x=π- \arcsin\frac<7><6>+2πl, l∈Z\end\right.\) на ЕГЭ потеряет \(2\) балла. Что не так? – спросите вы. Ведь точно не табличное значение, почему нельзя написать \(\arcsin⁡\frac<7><6>\)? Пролистайте до самого верха, туда, где было определение арксинуса. Там написана маленькая, но очень важная деталь – аргумент арксинуса должен быть меньше или равен \(1\) и больше или равен \(-1\). Ведь синус не может выходить за эти пределы! И если решить уравнение с помощью круга, а не бездумно пользоваться готовыми формулами, то станет очевидно, что у такого уравнения решений нет.

Думаю, вы уловили закономерность.

Если \(\sin ⁡x\) равен не табличному значению между \(1\) и \(-1\), то решения будут выглядеть как: \( \left[ \beginx= \arcsin a +2πn, n∈Z\\ x=π- \arcsin a +2πl, l∈Z\end\right.\)

Арксинус отрицательного числа

Прежде чем научиться решать тригонометрические уравнения с отрицательным синусом советую запомнить формулу:

Если хотите понять логику этой формулы, внимательно рассмотрите картинку ниже:

Удивил последний пример? Почему в нем формула не работает? Потому что запись \(\arcsin⁡(-\frac<\sqrt<7>><2>)\) в принципе неверна, ведь \(-\frac<\sqrt<7>> <2>Синус
Тригонометрические уравнения

Алгебра

План урока:

Арккосинус

Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:

Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.

Задание. Решите ур-ние

Задание. Запишите корни ур-ния

Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.

Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:

Ответ: 7π/3 и 8π/3.

Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние

Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:

Наконец, решениями ур-ния

Решение уравнений tgx = a и ctgx = a

Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):

Таким образом, у ур-ния tgx = a существует очевидное решение

Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:

Задание. Решите ур-ние

Задание. Запишите формулу корней ур-ния

Далее рассмотрим ур-ние вида

Задание. Решите ур-ние

Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии

Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.

Решение простейших тригонометрических уравнений с помощью аркфункций

Готовиться с нами — ЛЕГКО!

Эффективное решение существует!

Вы ищете теорию и формулы для ЕГЭ по математике ? Образовательный проект «Школково» предлагает вам заглянуть в раздел «Теоретическая справка». Здесь представлено пособие по подготовке к ЕГЭ по математике, которое фактически является авторским. Оно разработано в соответствии с программой школьного курса и включает такие разделы, как арифметика, алгебра, начала анализа и геометрия (планиметрия и стереометрия). Каждое теоретическое положение, содержащееся в пособии по подготовке к ЕГЭ по математике, сопровождается методически подобранными задачами с подробными разъяснениями.

Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить , выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.

После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике. Для этого достаточно выбрать задачу по данной теме и решить ее. Кроме того, справочные материалы по математике для ЕГЭ пригодятся вам и для других естественнонаучных дисциплин, таких как физика, химия и т. д.

Задача 1

Решите уравнение \[\sin x=-a, \quad 0

Решение

\(\arcsin(-a)\) – это такой угол из отрезка \(\left[-\dfrac<\pi>2; \dfrac<\pi>2\right]\) , синус которого равен \(-a\) :
Следовательно, одна серия решений данного уравнения – это \(x=\arcsin(-a)+2\pi n, n\in\mathbb\) .
Но на окружности есть еще одна точка, синус в которой равен \(-a\) – угол \(\alpha\) :
Заметим, что \(\alpha=\pi+(-\arcsin(-a))\) . Так как \(\arcsin(-a)=-\arcsin a\) , то \(\alpha=\pi+\arcsin a\) . Следовательно, ответ в нашем уравнении: \[\left[\begin\begin &x=-\arcsin a+2\pi n, n\in\mathbb\\[2ex] &x=\pi+\arcsin a+2\pi k, k\in\mathbb\end\end\right.\]

Задача 2

Решите уравнение \[\cos x=-a, \quad 0

Решение

\(\arccos(-a)\) – это такой угол из отрезка \(\left[0; \pi\right]\) , косинус которого равен \(-a\) :
Следовательно, одна серия решений данного уравнения – это \(x=\arccos(-a)+2\pi n, n\in\mathbb\) .
Но на окружности есть еще одна точка, косинус в которой равен \(-a\) – угол \(\alpha\) :
Заметим, что \(\alpha=-\arccos(-a)\) . Так как \(\arccos(-a)=\pi-\arccos a\) , то \(\alpha=-\pi+\arccos a\) . Следовательно, ответ в нашем уравнении: \[\left[\begin\begin &x=\pi-\arccos a+2\pi n, n\in\mathbb\\[2ex] &x=-\pi+\arccos a+2\pi k, k\in\mathbb\end\end\right.\]

Задача 3

Решите уравнение \[\mathrm\, x=-a, a>0\]

Решение

\(\mathrm\,(-a)\) – это такой угол из промежутка \(\left(-\dfrac<\pi>2;\dfrac<\pi>2\right)\) , тангенс которого равен \(-a\) :
Следовательно, одна серия решений данного уравнения – это \(x=\mathrm\,(-a)+2\pi n, n\in\mathbb\) .
Но на окружности есть еще одна точка, тангенс в которой равен \(-a\) – угол \(\alpha\) :
Заметим, что \(\alpha=\mathrm\,(-a)+\pi\) . Так как \(\mathrm\,(-a)=-\mathrm\, a\) , то \(\alpha=\pi-\mathrm\, a\) . Следовательно, ответ в нашем уравнении: \[\left[\begin\begin &x=-\mathrm\, a+2\pi n, n\in\mathbb\\[2ex] &x=\pi-\mathrm\, a+2\pi k, k\in\mathbb\end\end\right.\] Заметим, что так как углы \(-\mathrm\, a\) и \(\pi-\mathrm\, a\) отличаются друг от друга на \(\pi\) , то ответ можно записать в виде одной серии корней с периодом \(\pi\) : \[x=-\mathrm\, a+\pi m, m\in\mathbb\]

Задача 4

Решите уравнение \[\mathrm\, x=-a, a>0\]

Решение

\(\mathrm\,(-a)\) – это такой угол из промежутка \(\left(0;\pi\right)\) , котангенс которого равен \(-a\) :
Следовательно, одна серия решений данного уравнения – это \(x=\mathrm\,(-a)+2\pi n, n\in\mathbb\) .
Но на окружности есть еще одна точка, котангенс в которой равен \(-a\) – угол \(\alpha\) :
Заметим, что \(\alpha=\mathrm\,(-a)+\pi\) . Так как \(\mathrm\,(-a)=\pi-\mathrm\, a\) , то \(\alpha=2\pi-\mathrm\, a\) . Следовательно, ответ в нашем уравнении: \[\left[\begin\begin &x=\pi-\mathrm\, a+2\pi n, n\in\mathbb\\[2ex] &x=2\pi-\mathrm\, a+2\pi k, k\in\mathbb\end\end\right.\] Заметим, что так как углы \(2\pi-\mathrm\, a\) и \(\pi-\mathrm\, a\) отличаются друг от друга на \(\pi\) , то ответ можно записать в виде одной серии корней с периодом \(\pi\) : \[x=\pi-\mathrm\, a+\pi m, m\in\mathbb\]

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, — на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.


источники:

http://100urokov.ru/predmety/urok-4-prostejshaya-trigonometriya

http://shkolkovo.net/theory/reshenie_prostejshih_trigonometricheskih_uravnenij_s_pomoschyu_arkfunkcij