Решение тригонометрических уравнений и неравенств 11 класс

Решение тригонометрических уравнений и неравенств(подготовка к ЕГЭ)
презентация к уроку по алгебре (11 класс) по теме

Рассмотрены способы решения тригонометрических уравнений и неравенств

Скачать:

ВложениеРазмер
Решение тригонометрических уравнений и неравенств1.43 МБ
reshenie_trigonometricheskih_uravneniy_-2.ppt1.68 МБ

Предварительный просмотр:

Подписи к слайдам:

Предварительный просмотр:

Подписи к слайдам:

МЕТОДЫ РЕШЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

№ Уравнения № метода Методы 1 Sin x/3 — cos 6x = 2 4(б) 1.Разложение на множители. 2.Введение новой переменной: а) сведение к квадратному; б) универсальная подстановка; в) введение вспомогательного аргумента. 3. Сведение к однородному уравнению. 4. Использование свойств функций, входящих в уравнение: а) обращение к условию равенства тригонометрических функций; б) использование свойства ограниченности функции. 2 3 4 5 sinx – 2 cosx = 1 3, 2(б,в) 5 sin3x cos2x = 1 4(б) 6 cos2x = (cos x – sin x ) 1,2(б,в),3 7 1 – sin2x = cos x – sin x 1,2(б,в)3 8 cos3x = sin x 4(а) 9 4 – cos 2 x = 4 sin x 2(а) 10 sin3x – sin5x = 0 4(б) 11 tg 3x tg(5x +  /3) = 1 4(а) 12 2 tg x/2 — cos x = 2 1,2(а,б,в),3,4(а)

1. Какие методы решения тригонометрических уравнений вы знаете? 2. Определите и ответьте, какими методами нужно решать данные тригонометрические уравнения? а ) sin 2x – cos x = 0 б ) 2sin²x — 5sinx = -3 в ) cos²x – sin²x = sinx – cosx г ) sin2 x – 3sinx cosx + 2cos²x = 0 3. Решите простейшие тригонометрические уравнения:

Некоторые типы тригонометрических уравнений . Уравнения, сводящиеся к квадратным, относительно cos х = t , sin х = t . A sin 2 x + B cosx + C = 0 A cos 2 x + В sinx + C = 0 Решаются методом введения новой переменной. 2.Однородные уравнения первой и второй степени. I степени . A sinx + B cosx = 0 : cosx A tg x + B = 0 II степени . A sin 2 x + B sinx cosx + A cos 2 x = 0 : cos 2 x A tg 2 x + B tgx + C = 0 Решаются методом разложения на множители и методом введения новой переменной . 3. Уравнение вида: А sinx + B cosx = C . А, В, С  0 Применимы все методы.

4. Понижение степени. А cos 2 x + В = C . A cos2x + B = C. Решаются методом разложения на множители. A sin2x + B = C. A sin2x + B = C. Сводятся к однородным уравнениям С = С( ).

Формулы . a cosx + b sinx заменим на C sin ( x +  ), где sin  = cos  =  — вспомогательный аргумент. Универсальная подстановка. х   + 2  n ; Проверка обязательна! Понижение степени. = (1 + cos2x ) : 2 = (1 – cos 2x) : 2 Метод вспомогательного аргумента.

Сведение к однородному. sinx cosx + 6 cos 2 x = 5. Пример. 5 sin 2 x + Разложение на множители. Пример. — 2 cosx = 4 sinx — sin 2 x A sin2x + B sin 2 x = C, Asin2x + Bcos 2 x = C. Уравнения вида

1.Потеря корней: делим на g (х). опасные формулы (универсальная подстановка). Этими операциями мы сужаем область определения. 2. Лишние корни: возводим в четную степень. умножаем на g (х) (избавляемся от знаменателя). Этими операциями мы расширяем область определения. Проблемы ,возникающие при решении тригонометрических уравнений

Уравнение . Уравнение . Поделив уравнение на , получим , , При решении этой задачи обе части уравнения были поделены на . Напомним, что при делении уравнения на выражение, содержащее неизвестное, могут быть потеряны корни. Поэтому нужно проверить, не являются ли корни уравнения корнями данного уравнения. Если , то из уравнения следует, что . Однако и не могут одновременно равняться нулю, так как они связаны равенством . Следовательно, при делении уравнения , где , , на (или ) получаем уравнение, равносильное данному.

, x = y + . Решить уравнение cos²x + sinx cosx = 0 1) Делить на cosx нельзя, так как в условии не указано , что cosx не равен нулю. Но можно утверждать, что sinx не равен нулю, так как в противном случае cosx равен 0, что невозможно , так как sin²x-cos²x =1. Значит можно разделить на sin²x . 2) Решим уравнение разложением на множители: cos²x + sinx cosx = 0 , с osx ( cosx + sinx ) = 0 , с osx = 0 или cosx + sinx = 0, tg x=-1,

Уравнения, линейные относительно sin x и cos x а sin x + в cos x = с. Если а=в=0, а с не равно 0, то уравнение теряет смысл; Если а=в=с=0, то х – любое действительное число, то есть уравнение обращается в тождество. Рассмотрим случаи, когда а , в , с не равны 0. Примеры: 3 sin 5x — 4 cos 5x = 2 2 sin 3x + 5 cos 3x = 8. Последнее уравнение не имеет решений, так как левая часть его не превосходит 7. Уравнения, этого вида можно решить многими способами: с помощью универсальной подстановки, выразив sin x и cos x через tg х ; сведением уравнения к однородному; введением вспомогательного аргумента и другими. Решение этих уравнений существует при

Данное уравнение является уравнением вида , (1) где , , , которое можно решить другим способом. Разделим обе части этого уравнения на : . (2) Введем вспомогательный аргумент , такой, что . Такое число существует, так как . Таким образом, уравнение можно записать в виде . Последнее уравнение является простейшим тригонометрическим уравнением.

Уравнение . Используя формулы sin x = 2 sin cos , cos x = cos 2 — sin 2 и записывая правую часть уравнения в виде , получаем Поделив это уравнение на , получим равносильное уравнение Обозначая , получаем , откуда . 1) 2) Ответ: . 0 2 cos 2 cos 2 sin 4 2 sin 3 2 2    x x x x

4 sin ²x – 4sinx – 3 = 0 2cos²x – sinx – 1 = 0

4 sin ²x — 4 sinx – 3 = 0 ( -1) n+1 П /6 + П n, n Z. 2 с os²x – sin x – 1 = 0 ± П /6 + П n ; -П /2+2 П n, n Z.

Решить уравнение Здесь Поделим обе части уравнения на 5: Введем вспомогательный аргумент , такой, что , . Исходное уравнение можно записать в виде , , откуда Ответ:

1 ctg x 1 tg x cos x sin x = 60 ° =45 ° =30 °

— 0 — 0 — ctg x 0 — 0 — 0 tg x 1 0 -1 0 1 cos x 0 -1 0 1 0 sin x =360 ° =270 ° =180 ° = 90 ° 0 ° А

Урок-повторение по теме «Тригонометрические уравнения и неравенства» (11-й класс)

Разделы: Математика

Класс: 11

Цели:

  • Образовательные – систематизировать знания и создать разноуровневые условия контроля (самоконтроля, взаимоконтроля) усвоения знаний и умений.
  • Развивающие – способствовать формированию умений применять полученные знания в новой ситуации, развивать математическое мышление, речь.
  • Воспитательные – содействовать воспитанию интереса к математике, активности, мобильности, умения общаться.

Ход урока

  1. Оргмомент
  2. Математическая эстафета
  3. Конкурс капитанов
  4. Самостоятельная работа
  5. Угадай слово
  6. Подведение итогов. Домашнее задание

I. Оргмомент

Сегодня на уроке мы повторим тему «Тригонометрические уравнения и неравенства». Тем самым систематизируем знания и создадим разноуровневые условия контроля (самоконтроля, взаимоконтроля) усвоения знаний и умений. Данная тема важна еще и тем, что тригонометрические уравнения встречаются в заданиях ЕГЭ во всех частях.

Рассадить учащихся по группам (их две), выбрать капитанов. Четырех учеников посадить за компьютеры для решения тестов. Одному ученику дать индивидуальное задание: решить уравнение, входящее в часть В тестов ЕГЭ.

II. Математическая эстафета (Приложение 3)

Данный этап позволит нам отработать все формулы тригонометрических уравнений.

Члены команды по очереди подходят к доске и решают очередное уравнение.

Задания для 1 команды (Приложение 2)

Задания для 2 команды

III. Конкурс капитанов

Пока капитаны у доски решают свои задания, проверим ученика с индивидуальным заданием: решить уравнение, входящее в часть В тестов ЕГЭ.

1 капитану решить уравнение (1 — cos2x)(tgx — √3) = 0

2 капитану решить уравнение (1 — 2sinx)(ctgx — 1) = 0

IV. Самостоятельная работа

Каждая группа получает карточку, в которой не только задания работы, но и карточка со вспомогательной консультацией по решению каждого задания.

Задание группе №1

1. Решите уравнение:

2. Решите неравенство:

3. Решите уравнение:

Группа №1

Консультация первого уровня.

1. а) Решите уравнение относительно cos х по общей формуле для корней квадратного уравнения, после чего получившееся уравнение решите относительно х.

б) Разложите левую часть уравнения на множители и примените условие равенства произведения нулю.

2. Запишите решение неравенства относительно аргумента “3х”, а дальше относительно “х”.

3. Решите систему способом подстановки.

4. Исследуйте знак выражения, стоящего под знаком модуля.

Консультация второго уровня.

1. а) Решите уравнение как квадратное относительно cos x, придете к совокупности уравнений cos x= -(1/2) и cos x= -1. Решая каждое из уравнений, учтите, что arсcos(-1/2) = 2π/3, а второе уравнение можно решать используя частный случай.

б) Имеем: sin x (sin x +√3cos x) = 0. Перейдем к совокупности уравнений sin x = 0; sin x+√3cos x= 0. Решаем как однородное уравнение I степени (деление обеих частей уравнения на cos x≠ 0 или на sin x≠ 0).

Консультации для дополнительных заданий второго уровня.

1. Заметим, что √3/2 = cos(π/6); 1/2 = sin(π/6). Имеем формулу sin(π/6 + x) в левой части уравнения. Решаем уравнение: sin(π/6 + x) = -(1/2)

2. Имеем: 2y 2 + y – 1 ≤ 0

Решаем графически на единичной окружности.

5 sin x — 6 cos x — 6 = 0

Вынесем общий множитель за скобки. Будем решать совокупность уравнений:

(имеем однородное уравнение I степени)

Задание группе № 2

1. Решите уравнение:

б) 2 sin 2 x + 5 sinx ∙ cosx — 7cos 2 x = 0.

2. Решите неравенство:

Дополнительно:

1. Решите уравнение:

2. Решите уравнение:

2 cos 2 x+ cos x — 1 ≤ 0.

3. Решите неравенство:

Группа №2

Консультация первого уровня.

1. а) Воспользуйтесь тождеством ctgx = 1/(tgx). Решается уравнение заменой переменной. При решении дробного уравнения вспомните алгоритм его решения.

б) Имеем однородное уравнение второй степени, решаем его деление обеих частей уравнения на cos x (или sin x). Затем сведем к решению квадратного уравнения.

2. Запишем решение неравенства для (π/2 + x), затем относительно “x”.

3. Решите систему способом подстановки, для этого из 1-го уравнения выразите одну переменную через другую и подставьте во второе уравнение. Решение тригонометрического уравнения записывается точками единичной окружности.

4. Помним, что верно равенство x 2 =│x│ 2 для любого x. Введите замену │sinx│= y. Решение сведется к решению квадратного (неполного) уравнения.

Консультация второго уровня.

1. а) Получив дробное уравнение y + (1/y) = 2. Умножив обе части уравнения на общий знаменатель y ≠ 0. Решаем квадратное уравнение y 2 — 2y+ 1 = 0. Проверьте корни уравнения. Сделайте обратную подстановку.

б) Введем новую переменную tg x= y, получаем 2y 2 + 5y— 7 = 0, решив его будем иметь tg x= 1, или tg x= -3,5. Решим каждое из уравнений.

Решаем

Решаем каждое из полученных уравнений относительно x.

Консультации для дополнительных заданий первого уровня.

1. Умножьте обе части уравнения на 1/2.

2. Введите замену: cos x = y и решите квадратное неравенство.

3. Воспользуйтесь формулами sin x = 2 sin(x/2)cos(x/2)

Консультации для дополнительных заданий второго уровня.

1. Заметим, что (√3/2)= cos(π/6); 1/2 = sin(π/6). Имеем формулу sin(π/6 + x) в левой части уравнения. Решаем уравнение: sin(π/6 + x) = -(1/2)

Решаем графически на единичной окружности.

5 sin x — 6 cos x — 6 = 0

Вынесем общий множитель за скобки. Будем решать совокупность уравнений:

(имеем однородное уравнение I степени)

Ответы для группы №1

Ответы к дополнительной части.

Ответы для группы №2

Ответы к дополнительной части.

В это время группа более сильных учащихся на доске должна решить следующее задание

Решите уравнение:

V. Угадай слово (Приложение 4)

И на последок еще такое задание, в котором всего одно слово, но какое?! Решив задания вы его и отгадаете. На доске находите карточку со своим ответом и переворачиваете ее.

V. Подведение итогов. Домашнее задание.

К работе прилагается тест в MS Excel (Приложение 5).

Как научить решать тригонометрические уравнения и неравенства: методика преподавания

Курс математики корпорации «Российский учебник», авторства Георгия Муравина и Ольги Муравиной, предусматривает постепенный переход к решению тригонометрических уравнений и неравенств в 10 классе, а также продолжение их изучения в 11 классе. Представляем вашему вниманию этапы перехода к теме с выдержками из учебника «Алгебра и начало математического анализа» (углубленный уровень).

1. Синус и косинус любого угла (пропедевтика к изучению тригонометрических уравнений)

Пример задания. Найти приближенно углы, косинусы которых равны 0,8.

Решение. Косинус — это абсцисса соответствующей точки единичной окружности. Все точки с абсциссами, равными 0,8, принадлежат прямой, параллельной оси ординат и проходящей через точку C(0,8; 0). Эта прямая пересекает единичную окружность в двух точках: Pα° и Pβ°, симметричных относительно оси абсцисс.

С помощью транспортира находим, что угол α° приближенно равен 37°. Значит, общий вид углов поворота с конечной точкой Pα°:

α° ≈ 37° + 360°n, где n — любое целое число.

В силу симметрии относительно оси абсцисс точка Pβ° — конечная точка поворота на угол –37°. Значит, для нее общий вид углов поворота:

β° ≈ –37° + 360°n, где n — любое целое число.

Ответ: 37° + 360°n, –37° + 360°n, где n— любое целое число.

Пример задания. Найти углы, синусы которых равны 0,5.

Решение. Синус — это ордината соответствующей точки единичной окружности. Все точки с ординатами, равными 0,5, принадлежат прямой, параллельной оси абсцисс и проходящей через точку D(0; 0,5).

Эта прямая пересекает единичную окружность в двух точках: Pφ и Pπ–φ, симметричных относительно оси ординат. В прямоугольном треугольнике OKPφ катет KPφ равен половине гипотенузы OPφ, значит,

Общий вид углов поворота с конечной точкой Pφ:

где n — любое целое число. Общий вид углов поворота с конечной точкой Pπ–φ:

где n — любое целое число.

Ответ: где n — любое целое число.

2. Тангенс и котангенс любого угла (пропедевтика к изучению тригонометрических уравнений)

Пример 2. Найти общий вид углов, тангенс которых равен –1,2.

Пример задания. Найти общий вид углов, тангенс которых равен –1,2.

Решение. Отметим на оси тангенсов точку C с ординатой, равной –1,2, и проведем прямую OC. Прямая OC пересекает единичную окружность в точках Pα° и Pβ° — концах одного и того же диаметра. Углы, соответствующие этим точкам, отличаются друг от друга на целое число полуоборотов, т.е. на 180°n (n — целое число). С помощью транспортира находим, что угол Pα° OP0 равен –50°. Значит, общий вид углов, тангенс которых равен –1,2, следующий: –50° + 180°n (n — целое число)

По синусу и косинусу углов 30°, 45° и 60° легко найти их тангенсы и котангенсы. Например,

Перечисленные углы довольно часто встречаются в разных задачах, поэтому полезно запомнить значения тангенса и котангенса этих углов.


источники:

http://urok.1sept.ru/articles/583786

http://rosuchebnik.ru/material/kak-nauchit-reshat-trigonometricheskie-uravneniya-i-neravenstva-metodi/