Решение тригонометрических уравнений и неравенств конспект кратко

Урок по теме «Решение тригонометрических неравенств»

Разделы: Математика

Тема “Тригонометрические неравенства” является объективно сложной для восприятия и осмысления учащимися 10-го класса. Поэтому очень важно последовательно, от простого к сложному формировать понимание алгоритма и вырабатывать устойчивый навык решения тригонометрических неравенств.

Успех освоения данной темы зависит от знания основных определений и свойств тригонометрических и обратных тригонометрических функций, знания тригонометрических формул, умения решать целые и дробно-рациональные неравенства, основные виды тригонометрических уравнений.

Особый упор нужно делать на методике обучения решения простейших тригонометрических неравенств, т.к. любое тригонометрическое неравенство сводится к решению простейших неравенств.

Первичное представление о решении простейших тригонометрических неравенств предпочтительно вводить, используя графики синуса, косинуса, тангенса и котангенса. И только после учить решать тригонометрические неравенства на окружности.

Остановлюсь на основных этапах рассуждения при решении простейших тригонометрических неравенств.

  1. Находим на окружности точки, синус (косинус) которых равен данному числу.
  2. В случае строгого неравенства отмечаем на окружности эти точки, как выколотые, в случае нестрогого – как заштрихованные.
  3. Точку, лежащую на главном промежутке монотонности функции синус (косинус), называем Рt1, другую точку – Рt2.
  4. Отмечаем по оси синусов (косинусов) промежуток, удовлетворяющий данному неравенству.
  5. Выделяем на окружности дугу, соответствующую данному промежутку.
  6. Определяем направление движения по дуге (от точки Рt1 к точке Рt2по дуге), изображаем стрелку по направлению движения, над которой пишем знак “+” или “-” в зависимости от направления движения. (Этот этап важен для контроля найденных углов. Ученикам можно проиллюстрировать распространенную ошибку нахождения границ интервала на примере решения неравенства по графику синуса или косинуса и по окружности).
  7. Находим координаты точек Рt1 (как арксинус или арккосинус данного числа)и Рt2т.е. границы интервала, контролируем правильность нахождения углов, сравнивая t1и t2.
  8. Записываем ответ в виде двойного неравенства (или промежутка) от меньшего угла до большего.

Рассуждения при решении неравенств с тангенсом и котангенсом аналогичны.

Рисунок и запись решения, которые должны быть отражены в тетради у учеников, приведены в предлагаемом конспекте.

Конспект урока по теме: “Решение тригонометрических неравенств”.

Задача урока – продолжить изучение решения тригонометрических неравенств, содержащих функции синус и косинус, перейти от простейших неравенств к более сложным.

  • закрепление знаний тригонометрических формул, табличных значений тригонометрических функций, формул корней тригонометрических уравнений;
  • формирование навыка решения простейших тригонометрических неравенств;
  • освоение приёмов решения более сложных тригонометрических неравенств;
  • развитие логического мышления, смысловой памяти, навыков самостоятельной работы, самопроверки;
  • воспитание аккуратности и чёткости в оформлении решения, интереса к предмету, уважения к одноклассникам.
  • формирование учебно-познавательных, информационных, коммуникативных компетенций.
  • Оборудование: графопроектор, раздаточные карточки с готовыми чертежами тригонометрических кругов, переносная доска, карточки с домашним заданием.

    Форма организации обучения – урок. Методы обучения, используемые на уроке – словесные, наглядные, репродуктивные, проблемно-поисковые, индивидуального и фронтального опроса, устного и письменного самоконтроля, самостоятельной работы.

    Этапы урока

    Содержание

    Организация класса на работу.

    Проверка домашнего задания.

    (Сбор тетрадей с домашней работой)

    Формулировка цели урока.

    – Сегодня на уроке повторим решение простейших тригонометрических неравенств и рассмотрим более сложные случаи.

    Устная работа.

    (Задания и ответы записаны на кодоскопной ленте, открываю ответы по ходу решения)

      Решить тригонометрические уравнения:

    sinx = —, 2sinx =, sin2x = , sin(x – ) = 0, cosx = ,

    cosx = —, cos2x = 1, tgx = -1.

  • Назовите главные промежутки монотонности функций синус и косинус.
  • Повторение.

    – Вспомним алгоритм решения простейших тригонометрических неравенств.

    (На доске – заготовки двух окружностей. Вызываю по одному двух учащихся для решения неравенств.Ученик подробно объясняет алгоритм решения.Класс работает совместно с отвечающими у доски на заранее подготовленных карточках с изображением окружности).

    1) sinx ;

    t1 = arccos(-) = p – arccos =

    = p – = ;

    t2 = —;

    + 2p n t2;

    t1 = arcsin = ;

    t2 = -p — = —;

    + 2p n 2 2x – 2cos2x 0.

    (Вспомним прием решения тригонометрических уравнений вынесением общего множителя за скобку).

    cos2x(cos2x – 2) 0.

    Замена: cos2x = t, 1; t(t – 2) 0; Второе неравенство не удовлетворяет условию 1.

    cos2x 0. (Решить неравенство самостоятельно. Проверить ответ).

    Ответ: + p n 2 x – 5sinx + 1 0.

    (Вспомним прием решения тригонометрических уравнений заменой переменной. У доски решает ученик с комментариями).

    Замена sinx = t, 1. 6t 2 – 5t +1 0, 6(t – )(t – ),

    Ответ: + 2p n х + 2p n, -p -arcsin+ 2p k х arcsin+ 2p k, n, k Z.

    №3. sinx + cos2x> 1.

    (Обсуждаем варианты решения. Вспоминаем фомулу косинуса двойного угла. Класс решает самостоятельно, один ученик – на индивидуальной доске с последующей проверкой).

    sinx + cos2x – 1> 0, sinx – 2sin 2 x> 0, sinx(1 – 2sinx) > 0,

    2p n 2 + () 2 = 1, то существует такой угол , что cos = , а sin = . Перепишем предыдущее неравенство в виде: sin(x + ) . Последнее неравенство, а, значит, и исходное неравенство имеет хотя бы одно решение при каждома таком, что -1, то есть при каждом а -5. Ответ: а -5.

    Домашнее задание.

    (Раздаю карточки с записью домашнего задания.Комментирую решение каждого неравенства).

    1. cosx > sin 2 x;
    2. 4sin2xcos2x 2 sin 2 – 0,5;
    3. sinx + cosx > 1.

    Повторить тригонометрические формулы сложения, подготовиться к самостоятельной работе.

    Подведение итогов, рефлексия.

    – Назовите приемы решения тригонометрических неравенств.

    – Каким образом знание алгоритма решения простейших тригонометрических неравенств используется при решении более сложных неравенств?

    – Какие неравенства вызвали наибольшее затруднение?

    (Оцениваю работу учащихся на уроке).

    Самостоятельная работа
    по результатам освоения материала

    Вариант 1

    Решите неравенства 1 – 3:

    1. sin3x – 2 x + 3cosx > 0;
    2. coscos2x – sinsin2x .
    3. Определите все а, при каждом из которых неравенство 12sinx + 5cosx а имеет хотя бы одно решение.

    Вариант 2

    Решите неравенства 1 – 3:

    1. 2cos> 1;
    2. sin 2 x – 4sinx

    Решение тригонометрических уравнений и неравенств конспект кратко

    Методы решения тригонометрических уравнений.

    1. Алгебраический метод.

    ( метод замены переменной и подстановки ).

    2. Разложение на множители.

    П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

    Р е ш е н и е . Перенесём все члены уравнения влево:

    sin x + cos x – 1 = 0 ,

    преобразуем и разложим на множители выражение в

    левой части уравнения:

    П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

    Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

    sin x · cos x – sin 2 x = 0 ,

    sin x · ( cos x – sin x ) = 0 ,

    П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

    Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

    2 cos 4x cos 2x = 2 cos ² 4x ,

    cos 4x · ( cos 2x – cos 4x ) = 0 ,

    cos 4x · 2 sin 3x · sin x = 0 ,

    1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

    3. Приведение к однородному уравнению.

    а) перенести все его члены в левую часть;

    б) вынести все общие множители за скобки;

    в) приравнять все множители и скобки нулю;

    г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

    cos ( или sin ) в старшей степени;

    д) решить полученное алгебраическое уравнение относительно tan .

    П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

    Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

    sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

    tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

    корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

    1) tan x = –1, 2) tan x = –3,

    4. Переход к половинному углу.

    П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

    Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

    = 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

    2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

    tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

    5. Введение вспомогательного угла.

    где a , b , c – коэффициенты; x – неизвестное.

    Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

    6. Преобразование произведения в сумму.

    П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

    Р е ш е н и е . Преобразуем левую часть в сумму:

    Тригонометрические неравенства и методы их решения

    Тригонометрическими неравенствами называются неравенства, которые содержат переменную под знаком тригонометрической функции.

    Методы решений неравенств:

    1. Решение тригонометрических неравенств с помощью единичной окружности.
    2. Графическое решение тригонометрических неравенств.
    3. Решение неравенств методом интервалов.

    При решении более сложных тригонометрических неравенств пользуются двумя основными приемами:

    I. Данное неравенство с помощью равносильных преобразований сводится к простейшим тригонометрическим неравенствам. При выполнении преобразований пользуются теми же приемами, что и при решении тригонометрических уравнений.

    II. Применяется метод интервалов для определения числовых промежутков, в которых содержатся решения неравенства. Предварительно решается соответствующее тригонометрическое уравнение и устанавливаются интервалы знакопостоянства с учетом области определения неравенства.

    Неравенство \(sinx>a\)

    1. При \(|a|≥1\) неравенство \(sinx>a\) не имеет решений: \(x\in \varnothing\) .
    2. При \(a решением неравенства \(sinx>a\) является любое действительное число: \(x\in \mathbb R\) .
    3. При \(−1≤a решение неравенства \(sinx>a\) выражается в виде \(arcsin a + 2\pi n .

    Неравенство \(sinx≥a\)

    Неравенство \(sinx

    Неравенство \(sinx≤a\)

    Неравенство \(cosx>a\)

    1. При \(a≥1\) неравенство \(cosx>a\) не имеет решений: \(x\in \varnothing\) .
    2. При \(a решением неравенства \(cosx>a\) является любое действительное число: \(x\in \mathbb R\) .
    3. При \(−1≤a решение неравенства \(cosx>a\) имеет вид \(-arccos a + 2\pi n .

    Неравенство \(cosx≥a\)

    Неравенство \(cosx

    Неравенство \(cosx≤a\)

    Неравенство \(tgx>a\)

    При любом действительном значении \(a\) решение строгого неравенства \(tgx>a\) имеет вид \(arctg a + \pi n .

    Неравенство \(tgx≥a\)

    Для любого значения \(a\) решение неравенства \(tgx≥a\) выражается в виде \(arctg a + \pi n \le x .

    Неравенство \(tgx

    Для любого значения \(a\) решение неравенства \(tgx записывается в виде \(-\frac<\pi>2 + \pi n .

    Неравенство \(tgx≤a\)

    При любом \(a\) неравенство \(tgx≤a\) имеет следующее решение: \(-\frac<\pi>2 + \pi n .

    Неравенство \(ctgx>a\)

    При любом \(a\) решение неравенства \(ctgx>a\) имеет вид \(\pi n .

    Неравенство \(ctgx≥a \)

    Нестрогое неравенство \(ctgx≥a\) имеет аналогичное решение \(\pi n .

    Неравенство \(ctgx

    Для любого значения \(a\) решение неравенства \(ctgx лежит в открытом интервале \(arcctg a + \pi n .

    Неравенство \(ctgx≤a\)

    При любом \(a\) решение нестрогого неравенства \(ctgx≤a\) находится в полуоткрытом интервале \(arcctg a + \pi n \le x .

    Пример. Решите неравенство: \(cosx>\frac12\) .

    Решение: Данное неравенство можно решить двумя способами: графически и с помощью единичного круга. Рассмотрим каждый из способов.

    Первый способ. Изобразим в одной системе координат функции, описывающие левую и правую части неравенства, то есть \(y=cosx \ и \ y=\frac12\) . Выделим промежутки, на которых график функции косинус \(y=cosx\) расположен выше графика прямой \(y=\frac12\) .

    Найдем абсциссы точек \(x_1\ и \ x_2\) – точек пересечения графиков функций \(y=cosx\ и\ y=\frac12\) , которые являются концами одного из промежутков, на котором выполняется указанное неравенство: \(x_1=-arccos\frac12=-\frac<\pi>3; x_2=arccos\frac12=\frac<\pi>3\) .

    Учитывая, что косинус – функция периодическая, с периодом \(2\pi\) , ответом будут значения x из промежутков \((-\frac<\pi>3+2\pi k;\frac<\pi>3+2\pi k), \ k\in Z\) .

    Второй способ. Построим единичную окружность и прямую \(x=\frac12\) (так как на единичной окружности косинусам отвечает ось абсцисс). Обозначим \(P_\ и \ P_\) – точки пересечения прямой и единичной окружности. Решением исходного уравнения будет множество точек абсциссы, которых меньше \(\frac12\) . Найдем значение \(x_1 \ и \ x_2\) , совершая обход против часовой стрелки так, чтобы \(x_1 :

    Учитывая периодичность косинуса, окончательно получим интервалы \((-\frac<\pi>3+2\pi k;\frac<\pi>3+2\pi k), \ k\in Z\) .


    источники:

    http://www.sites.google.com/site/trigonometriavneskoly/metody-resenia-trigonometriceskih-uravnenij

    http://itest.kz/ru/ent/matematika/10-klass/lecture/trigonometricheskie-neravenstva-i-metody-ih-resheniya