Решение тригонометрических уравнений понижением степени

Тема 18. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. Уравнения, решаемые понижением степени. Однородные уравнения и приводимые к ним. Универсальная подстановка.
материал для подготовки к егэ (гиа) по алгебре (10 класс) по теме

Актуальной задачей на сегодняшний день является качественная подготовка учащихся к единому государственному экзамену (ЕГЭ) по математике, а также абитуриентов к вступительным экзаменам по математике в вузы, проводимым как в форме письменных контрольных работ, так и в форме тестирований.

Имея многолетний положительный опыт подготовки школьников и абитуриентов к экзаменам по математике, проводимым в разных формах, считаю целесообразным поделиться своими разработками со всеми заинтересованными в них лицами.

Тема 18. «Тригонометрические уравнения. Уравнения, решаемые понижением степени. Однородные уравнения и приводимые к ним. Универсальная подстановка» содержит теоретические сведения, систематизированный набор ключевых методов решения типовых задач, сопровождающихся подробным разбором решений. По каждому методу приводятся упражнения с ответами для закрепления изучаемого материала.

Материал будет полезен для использования учителями общеобразовательных учреждений на элективных курсах и факультативных занятиях по математике для подготовки учащихся к ЕГЭ, абитуриентов при подготовке к вступительным экзаменам в вузы.

Скачать:

ВложениеРазмер
tema_18._trigonometricheskie_uravneniya.metody_resheniya_4-6.docx67.08 КБ

Предварительный просмотр:

Тема 18. Тригонометрические уравнения.

Уравнения, решаемые понижением степени. Однородные уравнения и приводимые к ним. Универсальная подстановка.

IV. Уравнения, решаемые понижением степени.

Если уравнение содержит в четной степени, то бывает удобно применять формулы понижения степени

Пример. Решить уравнение

Решение является частью множества корней

1) Число корней уравнения на интервале равно.

V. Однородные уравнения и приводимые к ним.

Однородные уравнения, то есть уравнения вида

где — некоторые числа (у всех слагаемых сумма показателей одинакова) приводятся к алгебраическим относительно путем деления обеих частей уравнения на соответственно.

Некоторые уравнения можно сделать однородными путем замены 1 на путем различных преобразований функций, входящих в уравнение и т.д.

Примеры. Решить уравнение.

Решение. Легко убедиться, что не является корнем исходного уравнения. В самом деле, если , то в силу исходного уравнения, и , что противоречит основному тригонометрическому тождеству Этот факт позволяет разделить левую и правую части уравнения на . Получим уравнение

Решение. Поскольку не является корнем данного уравнения, разделим левую и правую части уравнения на В результате приходим к квадратному уравнению относительно

Ответ:

Решение. Представим правую часть данного уравнения в виде . Тогда исходное уравнение запишется в виде

После преобразований приходим к уравнению

разобранному в предыдущем примере.

Ответ:

  1. Ответ:
  2. Ответ:
  3. Ответ:
  4. Ответ:
  5. Ответ:
  6. Число корней уравнения на интервале равно.

VI. Универсальная подстановка.

Универсальная тригонометрическая подстановка позволяет перейти от синуса и косинуса аргумента к тангенсу половинного аргумента. Используются формулы

Этим методом удобно решать линейные тригонометрические уравнения, т.е. уравнения вида

При переходе от синуса и косинуса аргумента к тангенсу половинного аргумента возможна потеря решений, следует помнить, что (в этих точках не существует). Поэтому всякий раз, когда приходится пользоваться формулами , значения необходимо проверять отдельно, подставляя в исходное уравнение.

Примеры. Решить уравнение.

Решение. Сделаем подстановку для сокращения письма введем новую переменную Исходное уравнение перепишется в виде

Проверим, является ли решением данного уравнения значит не является корнем.

Способы решения тригонометрических уравнений

Министерство образования и молодёжной политики Чувашской Республики

Муниципальное образовательное учреждение

«Средняя общеобразовательная школа №6 г. Чебоксары»

Способы решения тригонометрических уравнений

МОУ «Средняя общеобразовательная школа №6

Методическая разработка по теме «Способы решения тригонометрических уравнений». В средней школе на изучение данной темы отводится незначительное количество часов. Эта разработка изучит, расширит и углубит математические знания по данной теме.

На экзаменах по математике для поступающих в ВУЗы, олимпиадах часто встречаются задания на решение тригонометрических уравнений.

Все приводимые способы направлены на развитие познавательного интереса к предмету, знакомящие учащихся с новыми идеями и методами, расширяющие представления об изучаемой теме в основной школе.

Уравнения, предлагаемые в данной разработке, интересны, красивы, носят прикладной характер, что позволяет повысить учебную мотивацию учащихся и интерес к предмету и вызвать желание узнать больше.

Основные цели методической разработки:

· знакомство учащихся с основными приемами и методами решения тригонометрических уравнений;

· развитие навыков применения теоретических сведений по данной теме на практике в различных проявлениях;

· развитие творческих способностей;

· повышение интереса к предмету;

· повторение и обобщение знаний по теме «Способы решения тригонометрических уравнений;

· оказание помощи учащимся систематизировании уравнений и нахождении рациональных приемов решения.

Особенность методической разработки.

Использование материала в работе даст положительные результаты при подготовке школьников к сдаче ЕГЭ по математике.

1. Уравнения, приводимые к алгебраическим. . . . . . . . . . . . .. . . . . . . . . . . . . . . .4

2. Уравнения, решаемые разложением на множители. . . . . . . . . . . . . . . . . . . . . .5

3. Однородные уравнения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4. Уравнения, решаемые с помощью формул сложения тригонометрических функций. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5. Уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

6. Уравнения, решаемые с помощью формул понижения степени. . . . . . . . . . . .8

7. Уравнения вида .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

8. Уравнения смешанного типа. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

9. Задания для промежуточного и итогового контроля результатов обучения. .13

10. Тригонометрическое уравнение на ЕГЭ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

11. Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1. Уравнение .

Если для любого t. Если , то формула корней уравнения такова:

2. Уравнение .

При уравнение не имеет решений, так как для любого . Если |a|≤1,то формула для записи всех решений уравнения такова: Удобно записывать не двумя, а одной формулой:

3. Уравнение . Решение данного уравнения имеет вид:.

4. Уравнение . Решение данного уравнения имеет вид:

Способы решения тригонометрических уравнений.

I. Уравнения, приводимые к алгебраическим

Пример. Решить уравнение

Решение. Воспользуемся тем, что . Тогда заданное уравнение можно переписать в виде . После понятных преобразований получим . Введем новую переменную . Тогда уравнение примет вид , откуда находим . Значит,. Из этих уравнений находим, соответственно,

Уравнения для самостоятельного решения:

II. Уравнения, решаемые разложением на множители

Смысл этого метода: если уравнение удается преобразовать к виду , то задача сводится к решению двух уравнений, то есть к решению совокупности уравнений: .

Пример. Решить уравнение .

Решение. Имеем . Значит, приходим к совокупности уравнений . Из первого уравнения находим . Из второго уравнения находим .

Уравнения для самостоятельного решения:

III. Однородные уравнения.

Определение. Уравнение вида, где называют однородным тригонометрическим уравнением первой степени, уравнение вида ¸называют однородным тригонометрическим уравнением второй степени.

Итак, дано уравнение . Разделив обе части уравнения почленно на , получим .

Но, внимание! Делить обе части уравнения на одно и то же выражение можно только в том случае, когда мы уверены, что это выражение нигде не обращается в нуль (на 0 делить нельзя). Уверены ли мы, что в рассматриваемом случае отличен от 0? Давайте проанализируем. Предположим, что cos x =0. Тогда однородное уравнение asinx+bcosx=0 примет вид asinx=0¸ то есть sinx=0¸ так как a≠0. Получается, что и cosx=0¸ и sinx=0¸ а это невозможно, так как sinx и cosx обращается в нуль в различных точках. Итак, в однородном тригонометрическом уравнении первой степени деление обеих частей уравнения на cosx— вполне благополучная операция.

Пример 1. Решить уравнение 2sinx-3cosx= 0.

Решение. Разделим обе части уравнения почленно на cosx¸ получим . Рассмотрим теперь однородное тригонометрическое уравнение второй степени . Если коэффициент a отличен от нуля, то есть в уравнении содержится член sin2x с каким-то коэффициентом, отличным от нуля, то, рассуждая как и выше, нетрудно убедиться в том, что при интересующих нас значениях переменной cos x не обращается в нуль, а потому можно обе части уравнения разделить почленно на .

Это — квадратное уравнение относительно новой переменной z= tgx .

Пример 2. Решить уравнение .

Решение. Разделим обе части уравнения почленно на cos2 x, получим Введя новую переменную получим, . Откуда находим z=1, z=2. Значит, либо tgx=1, либо tgx=2. Из первого уравнения находим Из второго уравнения находим .

Уравнения для самостоятельного решения:

IV. Уравнения, решаемые с помощью формул сложения тригонометрических функций.

позволяют сумму или разность синусов или косинусов разложить на множители.

Пример. Решить уравнения: sin5x + sinx=0;

Решение. Преобразовав сумму синусов в произведение, получим

Значит, либо , откуда находим , либо cos2x=0, откуда находим

Уравнения для самостоятельного решения:

V. Уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму

при решении тригонометрических уравнений.

Уравнения для самостоятельного решения:

VI. Уравнения, решаемые с помощью формул понижения степени

Пример. Решить уравнение

Уравнения для самостоятельного решения:

VII. Уравнения вида

Преобразование выражения Итак, Аналогично можно выражение преобразовать к виду .

Пример.

Здесь Имеем Введём вспомогательный аргумент , удовлетворяющий соотношениям например, . Тогда

Уравнения для самостоятельного решения:

VIII. Уравнения смешанного типа

1. Решите уравнения:

Выбор корней проведём на тригонометрической окружности

y

Ответ:

а)

Ответ:

в)

Ответ:

б)

Ответ:

г)

Ответ:

2. Решите уравнения.

y

Не удовлетворяет условию

Выберем те значения x, которые удовлетворяют условию

Ответ:

а)

Ответ:

в)

Ответ:

б)

Ответ:

г)

Ответ:

3. Решите уравнение.

Данное уравнение равносильно системе:

Решим второе уравнение системы:

не удовлетворяет условию

Выберем те значения х, которые удовлетворяют условию .

Ответ:

4. Решите уравнения.

Число корней на .

Выбор корней проведём на тригонометрической окружности.

Число решений на равно 5.

а)

Найти число решений на .

б) .

Найти число решений на

в)

Найти число решений на .

г) .

Найти число решений на .

5. Основной идеей решения следующих заданий является выражение синуса или косинуса через тангенс или котангенс половинного аргумента (или наоборот). При этом следует иметь в виду, что в формулах область определения «левых частей» равенств – все действительные числа, а область определения «правых частей» — .

Поэтому переход от одного уравнения к другому с использованием этих формул, вообще говоря, сужает ОДЗ на множество π.

Аналогичная ситуация с формулами

Вообще, использование формул, у которых ОДЗ «левых» и «правых» частей не совпадают, может привести либо к потере, либо к появлению посторонних корней.

Примерами таких формул являются:

Ответ:

а) . Ответ: .

в) .

Ответ: .

б) . Ответ: .

г) .

Ответ: .

IX. Задания для промежуточного контроля результатов обучения (ответы даны в скобках).

Уравнения, приводимые к алгебраическим.

Уравнения, решаемые способом разложения на множители.

Уравнения, решаемые с помощью формул сложения тригонометрических функций.

Уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму.

Уравнения, решаемые с помощью формул понижения степени.

Уравнения вида .

Уравнения смешанного типа.

1.

2.Найти наименьший корень уравнения на интервале

3.

Тест. Решение тригонометрических уравнений.

1. Найдите корни уравнения на интервале .

а) ; б) ; в) .

2. Найдите наибольший отрицательный корень уравнения

а) ; б) ; в) .

3. Решите уравнение: и найдите сумму корней, принадлежащих интервалу

а) ; б) ; в) .

4. Решите уравнение: и найдите сумму корней, принадлежащих интервалу .

а) ; б) ; в) .

Задания для итогового контроля результатов обучения.

1. Решите уравнения:

а) ; б) ;

в) ; г) ;

д) ; е) .

2. Найдите сумму корней управления

на промежутке .

3. Укажите количество корней уравнения

4. Решите уравнения:

а) ;

б) .

1. а) ; б) ; в) ; г) ;

д) ; е) . 2. 16. 3. 3. 4. а) ;

б) .

X. Тригонометрическое уравнение на ЕГЭ.

Решите уравнение . (С2,2007г.)

ОДЗ уравнения:

Используя способ разложения на множители, получим

или .

не удовлетворяет условию ОДЗ уравнения.

.

Используя способ решения однородного уравнения первой степени, получим:

С учетом ОДЗ уравнения решение данного уравнения имеет вид:

1. , , . Углубленное изучение курса алгебры и математического анализа для 10-11 класса, Москва, Просвещение, 1997 г.

2. , . Факультативный курс по математике: Решение задач: Учебное пособие для 11 кл. средней школы – М., Просвещение, 1999.

3. Журнал «Математика в школе», 2006, № 10.

4. , , . Учебно-тренировочные материалы для подготовки к единому государственному экзамену. Математика. – М. Интеллект-Центр, 2002-2007 г.

5. . Математика. Гтовимся к ЕГ, 2005.

6. . Алгебра и начала анализа; Учебник для 10-11 кл. средней школы – 2-е изд. – М. Просвещение, 2000.

7. , , . Алгебра и начала анализа: Учебник для 10-11 кл. средней школы – 4-е изд. – М. Просвещение, 2002.

8. и др. Алгебра и начала анализа.10-11 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. Ч2: Задач. Для общеобразоват. учреждений.- 5-е изд.-М.:Мнемозина,2004.

Формулы понижения степени в тригонометрии

Тригонометрические формулы обладают рядом свойств, одно из которых это применение формул понижения степени. Они способствуют упрощению выражений при помощи уменьшения степени.

Формулы понижения работают по принципу выражения степени синуса и косинуса через синус и косинус первой степени, но кратного угла. При упрощении формула становится удобной для вычислений, причем повышается кратность угла от α до n α .

Формулы понижения степени, их доказательство

Ниже приводится таблица формул понижения степени со 2 по 4 для sin и cos угла. После ознакомления с ними зададим общую формулу для всех степеней.

sin 2 α = 1 — cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 = 3 · sin α — sin 3 α 4 sin 4 = 3 — 4 · cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8

Данные формулы предназначены для понижения степени.

Существует формулы двойного угла у косинуса и синуса, из которых и следуют формулы понижения степени cos 2 α = 1 — 2 · sin 2 α и cos 2 α = 2 · cos 2 α — 1 . Равенства разрешаются относительно квадрата синуса и косинуса, которые предоставляются как sin 2 α = 1 — cos 2 α 2 и cos 2 α = 1 + cos 2 α 2 .

Формулы понижения степеней тригонометрических функций перекликаются с формулами синуса и косинуса половинного угла.

Имеет место применение формулы тройного угла sin 3 α = 3 · sin α — 4 · sin 3 α и cos 3 α = — 3 · cos α + 4 · cos 3 α .

Если решать равенство относительно синуса и косинуса в кубе, получим формулы понижения степеней для синуса и косинуса:

sin 3 α = 3 — 4 · cos 2 α + cos 4 α 8 и cos 3 α = 3 · cos α + cos 3 α 4 .

Формулы четвертой степени тригонометрических функций выглядят так: sin 4 α = 3 — 4 · cos 2 α + cos 4 α 8 и cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8 .

Чтобы понизить степени эти выражений, можно действовать в 2 этапа, то есть дважды понижать, тогда это выглядит таким образом:

sin 4 α = ( sin 2 α ) 2 = ( 1 — cos 2 α 2 ) 2 = 1 — 2 · cos 2 α + cos 2 2 α 4 = = 1 — 2 · cos 2 α + 1 + cos 4 α 2 4 = 3 — 4 · cos 2 α + cos 4 α 8 ; cos 4 α = ( cos 2 α ) 2 = ( 1 + cos 2 α 2 ) 2 = 1 + 2 · cos 2 α + cos 2 2 α 4 = = = 1 + 2 · cos 2 α + 1 + cos 4 α 2 4 = 3 + 4 · cos 2 α + cos 4 α 8

Методом подстановки мы упростили сложное выражение. Для того, чтобы записать общий вид формул понижения степени разделим их на с наличием четных и нечетных показателей. Четные показатели, где n = 2 , 4 , 6 … , выражение имеет вид sin n α = C n 2 n 2 n + 1 2 n — 1 · ∑ ( — 1 ) n 2 — k k = 0 n 2 — 1 · C k n · cos ( ( n — 2 · k ) α ) и cos n α = C n 2 n 2 n + 1 2 n — 1 ∑ ( — 1 ) n 2 — k k = 0 n 2 — 1 · C k n · cos ( ( n — 2 · k ) α ) .

Нечетные показатели, где n = 3 , 5 , 7 …, выражение имеет вид

sin n α = 1 2 n — 1 · ∑ ( — 1 ) n — 1 2 — k k = 0 n — 1 2 · C k n · cos ( ( n — 2 · k ) α ) и cos n α = 1 2 n — 1 ∑ ( — 1 ) n — 1 2 — k k = 0 n — 1 2 · C k n · cos ( ( n — 2 · k ) α ) .

C p q = p ! q ! · ( p — q ) ! — это число сочетаний из p элементов по q .

Формулы понижения степени общего вида используются на любого выражения с высокой степенью для его упрощения. Рассмотрим пример для понижения кубического синуса. Третья степень нечетная, значит воспользуемся формулой sin n α = 1 2 n — 1 · ∑ ( — 1 ) n — 2 2 — k k = 0 n — 1 2 — k · C k n · sin ( ( n — 2 · k ) α ) где значение n присвоим 3 . Подставляя n = 3 в выражение, получим

sin 3 α = 1 2 3 — 1 · ∑ ( — 1 ) 3 — 1 2 — k k = 0 3 — 1 2 — k · C k 3 · sin ( ( 3 — 2 · k ) α ) = = 1 4 · ∑ ( — 1 ) 1 — k k = 0 1 · C k 3 · sin ( ( 3 — 2 · k ) α ) = = 1 4 · ( ( — 1 ) 1 — 0 · C 0 3 · sin ( ( 3 — 2 · 0 ) α ) + ( 1 ) 1 — 1 · C 1 3 · sin ( ( 3 — 2 · 1 ) α ) ) = = 1 4 · ( ( — 1 ) 1 · 3 ! 0 ! · 3 ! · sin 3 α + ( — 1 ) 0 · 3 ! 1 ! · ( 3 — 1 ) ! · sin α ) = = 1 4 · ( — sin 3 α + 3 · sin α ) = 3 · sin α — sin 3 α 4

Примеры применения формул понижения степени

Чтобы закрепить материал, необходимо детально разобрать его на примерах с использованием формулы понижения степени. Таким образом будет понятен принцип решения, подстановка и весь алгоритм.

Справедлива ли формула вида cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8 при α = α 6 .

Для того, чтобы данная формула прошла проверку на возможность понижения степени с заданным значением угла α , необходимо посчитать левую и правую стороны. По условию имеем, что α = π 6 , тогда 2 α = π 3 , следовательно 4 α = 2 π 3 .

По таблице тригонометрических функций имеем, что cos α = cos π 6 = 3 2 , тогда cos 2 α = cos π 3 = 1 2 .

Для подробного уяснения необходимо проштудировать статью значения синуса, косинуса, тангенса и котангенса. Подставляя в формулу, получим cos 4 α = ( cos π 6 ) 4 = ( 3 2 ) 4 = 9 16 и 3 + 4 cos 2 α + cos 4 α 8 = 3 + 4 cos π 3 + cos 2 π 3 8 = 3 + 4 · 1 2 + ( — 1 2 ) 8 = 9 16

Отсюда видим, что левая и правая части равенства верны при α = π 6 , значит, выражение справедливо при значении заданного угла. Если угол отличен от α , формула понижения степени одинаково применима.

При помощи формулы понижения степени преобразовать выражение sin 3 2 β 5 .

Кубический синус для угла α имеет формулу вида sin 3 α = 3 · sin α — sin 3 α 4 . В данном случае необходимо выполнить замену α на 2 β 5 и подставить в формулу, тогда получаем выражение вида sin 3 2 β 5 = 3 · sin 2 β 5 — sin ( 3 · 2 β 5 ) 4 .

Это выражение равно равенству sin 3 2 β 5 = 3 · sin 2 β 5 — sin 6 β 5 4 .

Ответ: sin 3 2 β 5 = 3 · sin 2 β 5 — sin 6 β 5 4 .

Для решения сложных тригонометрических уравнений применяют формулы понижения степени. Они способны упростить выражение и сделать его намного удобным для вычислений или подстановки числовых значений.


источники:

http://pandia.ru/text/80/263/1615.php

http://zaochnik.com/spravochnik/matematika/trigonometrija/formuly-ponizhenija-stepeni-v-trigonometrii/