Решение тригонометрических уравнений с 13

Задания по теме «Тригонометрические уравнения»

Открытый банк заданий по теме тригонометрические уравнения. Задания C1 из ЕГЭ по математике (профильный уровень)

Задание №1179

Условие

а) Решите уравнение 2(\sin x-\cos x)=tgx-1.

б) Укажите корни этого уравнения, принадлежащие промежутку \left[ \frac<3\pi >2;\,3\pi \right].

Решение

а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 \sin x-2 \cos x-tg x=0. Учитывая, что \cos x \neq 0, слагаемое 2 \sin x можно заменить на 2 tg x \cos x, получим уравнение 1+2 tg x \cos x-2 \cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 \cos x)=0.

1) 1-tg x=0, tg x=1, x=\frac\pi 4+\pi n, n \in \mathbb Z;

2) 1-2 \cos x=0, \cos x=\frac12, x=\pm \frac\pi 3+2\pi n, n \in \mathbb Z.

б) С помощью числовой окружности отберём корни, принадлежащие промежутку \left[ \frac<3\pi >2;\, 3\pi \right].

x_1=\frac\pi 4+2\pi =\frac<9\pi >4,

x_2=\frac\pi 3+2\pi =\frac<7\pi >3,

x_3=-\frac\pi 3+2\pi =\frac<5\pi >3.

Ответ

а) \frac\pi 4+\pi n, \pm\frac\pi 3+2\pi n, n \in \mathbb Z;

б) \frac<5\pi >3, \frac<7\pi >3, \frac<9\pi >4.

Задание №1178

Условие

а) Решите уравнение (2\sin ^24x-3\cos 4x)\cdot \sqrt =0.

б) Укажите корни этого уравнения, принадлежащие промежутку \left( 0;\,\frac<3\pi >2\right] ;

Решение

а) ОДЗ: \begin tgx\geqslant 0\\x\neq \frac\pi 2+\pi k,k \in \mathbb Z. \end

Исходное уравнение на ОДЗ равносильно совокупности уравнений

\left[\!\!\begin 2 \sin ^2 4x-3 \cos 4x=0,\\tg x=0. \end\right.

Решим первое уравнение. Для этого сделаем замену \cos 4x=t, t \in [-1; 1]. Тогда \sin^24x=1-t^2. Получим:

t_1=\frac12, t_2=-2, t_2\notin [-1; 1].

4x=\pm \frac\pi 3+2\pi n,

x=\pm \frac\pi <12>+\frac<\pi n>2, n \in \mathbb Z.

Решим второе уравнение.

tg x=0,\, x=\pi k, k \in \mathbb Z.

При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.

Знаком «+» отмечены 1 -я и 3 -я четверти, в которых tg x>0.

Получим: x=\pi k, k \in \mathbb Z; x=\frac\pi <12>+\pi n, n \in \mathbb Z; x=\frac<5\pi ><12>+\pi m, m \in \mathbb Z.

б) Найдём корни, принадлежащие промежутку \left( 0;\,\frac<3\pi >2\right].

Ответ

а) \pi k, k \in \mathbb Z; \frac\pi <12>+\pi n, n \in \mathbb Z; \frac<5\pi ><12>+\pi m, m \in \mathbb Z.

Задание №1177

Условие

а) Решите уравнение: \cos ^2x+\cos ^2\frac\pi 6=\cos ^22x+\sin ^2\frac\pi 3;

б) Укажите все корни, принадлежащие промежутку \left( \frac<7\pi >2;\,\frac<9\pi >2\right].

Решение

а) Так как \sin \frac\pi 3=\cos \frac\pi 6, то \sin ^2\frac\pi 3=\cos ^2\frac\pi 6, значит, заданное уравнение равносильно уравнению \cos^2x=\cos ^22x, которое, в свою очередь, равносильно уравнению \cos^2x-\cos ^2 2x=0.

Но \cos ^2x-\cos ^22x= (\cos x-\cos 2x)\cdot (\cos x+\cos 2x) и

\cos 2x=2 \cos ^2 x-1, поэтому уравнение примет вид

(\cos x-(2 \cos ^2 x-1))\,\cdot (\cos x+(2 \cos ^2 x-1))=0,

(2 \cos ^2 x-\cos x-1)\,\cdot (2 \cos ^2 x+\cos x-1)=0.

Тогда либо 2 \cos ^2 x-\cos x-1=0, либо 2 \cos ^2 x+\cos x-1=0.

Решая первое уравнение как квадратное уравнение относительно \cos x, получаем:

(\cos x)_<1,2>=\frac<1\pm\sqrt 9>4=\frac<1\pm3>4. Поэтому либо \cos x=1, либо \cos x=-\frac12. Если \cos x=1, то x=2k\pi , k \in \mathbb Z. Если \cos x=-\frac12, то x=\pm \frac<2\pi >3+2s\pi , s \in \mathbb Z.

Аналогично, решая второе уравнение, получаем либо \cos x=-1, либо \cos x=\frac12. Если \cos x=-1, то корни x=\pi +2m\pi , m \in \mathbb Z. Если \cos x=\frac12, то x=\pm \frac\pi 3+2n\pi , n \in \mathbb Z.

Объединим полученные решения:

x=m\pi , m \in \mathbb Z; x=\pm \frac\pi 3 +s\pi , s \in \mathbb Z.

б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.

Получим: x_1 =\frac<11\pi >3, x_2=4\pi , x_3 =\frac<13\pi >3.

Ответ

а) m\pi, m \in \mathbb Z; \pm \frac\pi 3 +s\pi , s \in \mathbb Z;

б) \frac<11\pi >3, 4\pi , \frac<13\pi >3.

Задание №1176

Условие

а) Решите уравнение 10\cos ^2\frac x2=\frac<11+5ctg\left( \dfrac<3\pi >2-x\right) ><1+tgx>.

б) Укажите корни этого уравнения, принадлежащие интервалу \left( -2\pi ; -\frac<3\pi >2\right).

Решение

а) 1. Согласно формуле приведения, ctg\left( \frac<3\pi >2-x\right) =tgx. Областью определения уравнения будут такие значения x , что \cos x \neq 0 и tg x \neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 \cos ^2 \frac x2=1+\cos x. Получим уравнение: 5(1+\cos x) =\frac<11+5tgx><1+tgx>.

Заметим, что \frac<11+5tgx><1+tgx>= \frac<5(1+tgx)+6><1+tgx>= 5+\frac<6><1+tgx>, поэтому уравнение принимает вид: 5+5 \cos x=5 +\frac<6><1+tgx>. Отсюда \cos x =\frac<\dfrac65><1+tgx>, \cos x+\sin x =\frac65.

2. Преобразуем \sin x+\cos x по формуле приведения и формуле суммы косинусов: \sin x=\cos \left(\frac\pi 2-x\right), \cos x+\sin x= \cos x+\cos \left(\frac\pi 2-x\right)= 2\cos \frac\pi 4\cos \left(x-\frac\pi 4\right)= \sqrt 2\cos \left( x-\frac\pi 4\right) = \frac65.

Отсюда \cos \left(x-\frac\pi 4\right) =\frac<3\sqrt 2>5. Значит, x-\frac\pi 4= arc\cos \frac<3\sqrt 2>5+2\pi k, k \in \mathbb Z,

или x-\frac\pi 4= -arc\cos \frac<3\sqrt 2>5+2\pi t, t \in \mathbb Z.

Поэтому x=\frac\pi 4+arc\cos \frac<3\sqrt 2>5+2\pi k,k \in \mathbb Z,

или x =\frac\pi 4-arc\cos \frac<3\sqrt 2>5+2\pi t,t \in \mathbb Z.

Найденные значения x принадлежат области определения.

б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=\frac\pi 4+arccos \frac<3\sqrt 2>5 и b=\frac\pi 4-arccos \frac<3\sqrt 2>5.

1. Докажем вспомогательное неравенство:

Заметим также, что \left( \frac<3\sqrt 2>5\right) ^2=\frac<18> <25>значит \frac<3\sqrt 2>5

2. Из неравенств (1) по свойству арккосинуса получаем:

Отсюда \frac\pi 4+0

Аналогично, -\frac\pi 4

0=\frac\pi 4-\frac\pi 4 \frac\pi 4

При k=-1 и t=-1 получаем корни уравнения a-2\pi и b-2\pi.

\Bigg( a-2\pi =-\frac74\pi +arccos \frac<3\sqrt 2>5,\, b-2\pi =-\frac74\pi -arccos \frac<3\sqrt 2>5\Bigg). При этом -2\pi

-2\pi Значит, эти корни принадлежат заданному промежутку \left( -2\pi , -\frac<3\pi >2\right).

При остальных значениях k и t корни уравнения не принадлежат заданному промежутку.

Действительно, если k\geqslant 1 и t\geqslant 1, то корни больше 2\pi. Если k\leqslant -2 и t\leqslant -2, то корни меньше -\frac<7\pi >2.

Ответ

а) \frac\pi4\pm arccos\frac<3\sqrt2>5+2\pi k, k\in\mathbb Z;

б) -\frac<7\pi>4\pm arccos\frac<3\sqrt2>5.

Задание №1175

Условие

а) Решите уравнение \sin \left( \frac\pi 2+x\right) =\sin (-2x).

б) Найдите все корни этого уравнения, принадлежащие промежутку [0; \pi ];

Решение

а) Преобразуем уравнение:

\cos x+2 \sin x \cos x=0,

x =\frac\pi 2+\pi n, n \in \mathbb Z;

x=(-1)^\cdot \frac\pi 6+\pi k, k \in \mathbb Z.

б) Корни, принадлежащие отрезку [0; \pi ], найдём с помощью единичной окружности.

Указанному промежутку принадлежит единственное число \frac\pi 2.

Ответ

а) \frac\pi 2+\pi n, n \in \mathbb Z; (-1)^\cdot \frac\pi 6+\pi k, k \in \mathbb Z;

б) \frac\pi 2.

Задание №1174

Условие

б) Найдите все корни этого уравнения, принадлежащие отрезку \left[ -\frac<3\pi ><2>; -\frac<\pi >2 \right].

Решение

а) Найдём ОДЗ уравнения: \cos 2x \neq -1, \cos (\pi +x) \neq -1; Отсюда ОДЗ: x \neq \frac \pi 2+\pi k,

k \in \mathbb Z, x \neq 2\pi n, n \in \mathbb Z. Заметим, что при \sin x=1, x=\frac \pi 2+2\pi k, k \in \mathbb Z.

Полученное множество значений x не входит в ОДЗ.

Значит, \sin x \neq 1.

Разделим обе части уравнения на множитель (\sin x-1), отличный от нуля. Получим уравнение \frac 1<1+\cos 2x>=\frac 1<1+\cos (\pi +x)>, или уравнение 1+\cos 2x=1+\cos (\pi +x). Применяя в левой части формулу понижения степени, а в правой — формулу приведения, получим уравнение 2 \cos ^2 x=1-\cos x. Это уравнение с помощью замены \cos x=t, где -1 \leqslant t \leqslant 1 сводим к квадратному: 2t^2+t-1=0, корни которого t_1=-1 и t_2=\frac12. Возвращаясь к переменной x , получим \cos x = \frac12 или \cos x=-1, откуда x=\frac \pi 3+2\pi m, m \in \mathbb Z, x=-\frac \pi 3+2\pi n, n \in \mathbb Z, x=\pi +2\pi k, k \in \mathbb Z.

б) Решим неравенства

1) -\frac<3\pi >2 \leqslant \frac<\pi >3+2\pi m \leqslant -\frac \pi 2 ,

2) -\frac<3\pi >2 \leqslant -\frac \pi 3+2\pi n \leqslant -\frac \pi

3) -\frac<3\pi >2 \leqslant \pi+2\pi k \leqslant -\frac \pi 2 , m, n, k \in \mathbb Z.

1) -\frac<3\pi >2 \leqslant \frac<\pi >3+2\pi m \leqslant -\frac \pi 2 , -\frac32 \leqslant \frac13+2m \leqslant -\frac12 -\frac<11>6 \leqslant 2m \leqslant -\frac56 , -\frac<11> <12>\leqslant m \leqslant -\frac5<12>.

Нет целых чисел, принадлежащих промежутку \left [-\frac<11><12>;-\frac5<12>\right] .

2) -\frac <3\pi>2 \leqslant -\frac<\pi >3+2\pi n \leqslant -\frac<\pi ><2>, -\frac32 \leqslant -\frac13 +2n \leqslant -\frac12 , -\frac76 \leqslant 2n \leqslant -\frac1<6>, -\frac7 <12>\leqslant n \leqslant -\frac1<12>.

Нет целых чисел, принадлежащих промежутку \left[ -\frac7 <12>; -\frac1 <12>\right].

3) -\frac<3\pi >2 \leqslant \pi +2\pi k\leqslant -\frac<\pi >2, -\frac32 \leqslant 1+2k\leqslant -\frac12, -\frac52 \leqslant 2k \leqslant -\frac32, -\frac54 \leqslant k \leqslant -\frac34.

Этому неравенству удовлетворяет k=-1, тогда x=-\pi.

Ответ

а) \frac \pi 3+2\pi m; -\frac \pi 3+2\pi n; \pi +2\pi k, m, n, k \in \mathbb Z;

ЕГЭ Профиль №13. Тригонометрические уравнения

13 задания профильного ЕГЭ по математике представляет собой уравнение с отбором корней принадлежащих заданному промежутку. Одним из видов уравнений которое может оказаться в 13 задание является тригонометрическое уравнение. Как правило, это достаточно простое тригонометрическое уравнение для решения которого потребуется знания основных тригонометрических формул, и умение решать простейшие тригонометрические уравнения. Отбор корней тригонометрического уравнения принадлежащих заданному промежутку можно производить одним из четырех способов: методом перебора, с помощью тригонометрической окружности, с помощью двойного неравенства и графическим способом. В данном разделе представлены тригонометрические уравнения (всего 226) разбитые на три уровня сложности. Уровень А — это простейшие тригонометрические уравнения, которые являются подготовительными для решения реальных тригонометрических уравнений предлагаемых на экзамене. Уровень В — состоит из уравнений, которые предлагали на реальных ЕГЭ и диагностических работах прошлых лет. Уровень С — задачи повышенной сложности.

Основные виды тригонометрических уравнений (задание 13)

Рассмотрим некоторые наиболее часто встречающиеся виды тригонометрических уравнений и способы их решения.

\(\blacktriangleright\) Квадратные тригонометрические уравнения
Если после преобразования уравнение приняло следующий вид: \[<\Large>\] где \(a\ne 0, \ f(x)\) — одна из функций \(\sin x, \cos x, \mathrm\,x, \mathrm\, x\) ,
то такое уравнение с помощью замены \(f(x)=t\) сводится к квадратному уравнению.

Часто при решении таких уравнений используются
основные тождества: \[\begin <|ccc|>\hline \sin^2 \alpha+\cos^2 \alpha =1&& \mathrm\, \alpha \cdot \mathrm\, \alpha =1\\ &&\\ \mathrm\, \alpha=\dfrac<\sin \alpha><\cos \alpha>&&\mathrm\, \alpha =\dfrac<\cos \alpha><\sin \alpha>\\&&\\ 1+\mathrm^2\, \alpha =\dfrac1 <\cos^2 \alpha>&& 1+\mathrm^2\, \alpha=\dfrac1<\sin^2 \alpha>\\&&\\ \hline \end\]
формулы двойного угла: \[\begin <|lc|cr|>\hline \sin <2\alpha>=2\sin \alpha\cos \alpha & \qquad &\qquad & \cos<2\alpha>=\cos^2\alpha -\sin^2\alpha\\ \sin \alpha\cos \alpha =\dfrac12\sin <2\alpha>&& & \cos<2\alpha>=2\cos^2\alpha -1\\ & & & \cos<2\alpha>=1-2\sin^2 \alpha\\ \hline &&&\\ \mathrm\, 2\alpha = \dfrac<2\mathrm\, \alpha><1-\mathrm^2\, \alpha> && & \mathrm\, 2\alpha = \dfrac<\mathrm^2\, \alpha-1><2\mathrm\, \alpha>\\&&&\\ \hline \end\]

Пример 1. Решить уравнение \(6\cos^2x-13\sin x-13=0\)

С помощью формулы \(\cos^2\alpha=1-\sin^2\alpha\) уравнение сводится к виду:
\(6\sin^2x+13\sin x+7=0\) . Сделаем замену \(t=\sin x\) . Т.к. область значений синуса \(\sin x\in [-1;1]\) , то \(t\in[-1;1]\) . Получим уравнение:

\(6t^2+13t+7=0\) . Корни данного уравнения \(t_1=-\dfrac76, \ t_2=-1\) .

Таким образом, корень \(t_1\) не подходит. Сделаем обратную замену:
\(\sin x=-1 \Rightarrow x=-\dfrac<\pi>2+2\pi n, n\in\mathbb\) .

Пример 2. Решить уравнение \(5\sin 2x=\cos 4x-3\)

С помощью формулы двойного угла для косинуса \(\cos 2\alpha=1-2\sin^2\alpha\) имеем:
\(\cos4x=1-2\sin^22x\) . Сделаем эту подстановку и получим:

\(2\sin^22x+5\sin 2x+2=0\) . Сделаем замену \(t=\sin 2x\) . Т.к. область значений синуса \(\sin 2x\in [-1;1]\) , то \(t\in[-1;1]\) . Получим уравнение:

\(2t^2+5t+2=0\) . Корни данного уравнения \(t_1=-2, \ t_2=-\dfrac12\) .

Таким образом, корень \(t_1\) не подходит. Сделаем обратную замену: \(\sin 2x=-\dfrac12 \Rightarrow x_1=-\dfrac<\pi><12>+\pi n, \ x_2=-\dfrac<5\pi><12>+\pi n, n\in\mathbb\) .

Пример 3. Решить уравнение \(\mathrm\, x+3\mathrm\,x+4=0\)

Т.к. \(\mathrm\,x\cdot \mathrm\,x=1\) , то \(\mathrm\,x=\dfrac1<\mathrm\,x>\) . Сделаем замену \(\mathrm\,x=t\) . Т.к. область значений тангенса \(\mathrm\,x\in\mathbb\) , то \(t\in\mathbb\) . Получим уравнение:

\(t+\dfrac3t+4=0 \Rightarrow \dfrac=0\) . Дробь равна нулю, когда числитель равен нулю, а знаменатель отличен от нуля. Таким образом:

Сделаем обратную замену:

\(\blacktriangleright\) Кубические тригонометрические уравнения
Если после преобразования уравнение приняло следующий вид: \[<\Large>\] где \(a\ne 0, \ f(x)\) — одна из функций \(\sin x, \cos x, \mathrm\,x, \mathrm\, x\) ,
то такое уравнение с помощью замены \(f(x)=t\) сводится к кубическому уравнению.

Часто при решении таких уравнений в дополнение к предыдущим формулам используются
формулы тройного угла: \[\begin <|lc|cr|>\hline &&&\\ \sin <3\alpha>=3\sin \alpha -4\sin^3\alpha &&& \cos<3\alpha>=4\cos^3\alpha -3\cos \alpha\\&&&\\ \hline \end\]

Пример 4. Решить уравнение \(11\cos 2x-3=3\sin 3x-11\sin x\)

При помощи формул \(\sin 3x=3\sin x-4\sin^3x\) и \(\cos2x=1-2\sin^2x\) можно свести уравнение к уравнению только с \(\sin x\) :

\(12\sin^3x-9\sin x+11\sin x-3+11-22\sin^2 x=0\) . Сделаем замену \(\sin x=t, \ t\in[-1;1]\) :

\(6t^3-11t^2+t+4=0\) . Подбором находим, что один из корней равен \(t_1=1\) . Выполнив деление в столбик многочлена \(6t^3-11t^2+t+4\) на \(t-1\) , получим:

\((t-1)(2t+1)(3t-4)=0 \Rightarrow\) корнями являются \(t_1=1, \ t_2=-\dfrac12, \ t_3=\dfrac43\) .

Таким образом, корень \(t_3\) не подходит. Сделаем обратную замену:

\(\blacktriangleright\) Однородные тригонометрические уравнения второй степени: \[I. \quad <\Large>, \quad a\ne 0,c\ne 0\]

Заметим, что в данном уравнении никогда не являются решениями те значения \(x\) , при которых \(\cos x=0\) или \(\sin x=0\) . Действительно, если \(\cos x=0\) , то, подставив вместо косинуса ноль в уравнение, получим: \(a\sin^2 x=0\) , откуда следует, что и \(\sin x=0\) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если \(\cos x=0\) , то \(\sin x=\pm 1\) .

Аналогично и \(\sin x=0\) не является решением такого уравнения.

Значит, данное уравнение можно делить на \(\cos^2 x\) или на \(\sin^2 x\) . Разделим, например, на \(\cos^2 x\) :

Таким образом, данное уравнение при помощи деления на \(\cos^2x\) и замены \(t=\mathrm\,x\) сводится к квадратному уравнению:

\(at^2+bt+c=0\) , способ решения которого вам известен.

Уравнения вида \[I’. \quad <\Large>, \quad a\ne0,c\ne 0\] с легкостью сводятся к уравнению вида \(I\) с помощью использования основного тригонометрического тождества: \[d=d\cdot 1=d\cdot (\sin^2x+\cos^2x)\]

Заметим, что благодаря формуле \(\sin2x=2\sin x\cos x\) однородное уравнение можно записать в виде

\(a\sin^2 x+b\sin 2x+c\cos^2x=0\)

Пример 5. Решить уравнение \(2\sin^2x+3\sin x\cos x=3\cos^2x+1\)

Подставим вместо \(1=\sin^2x+\cos^2x\) и получим:

\(\sin^2x+3\sin x\cos x-4\cos^2x=0\) . Разделим данное уравнение на \(\cos^2x\) :

\(\mathrm^2\,x+3\mathrm\,x-4=0\) и сделаем замену \(t=\mathrm\,x, \ t\in\mathbb\) . Уравнение примет вид:

\(t^2+3t-4=0\) . Корнями являются \(t_1=-4, \ t_2=1\) . Сделаем обратную замену:

\(\blacktriangleright\) Однородные тригонометрические уравнения первой степени: \[II.\quad <\Large>, a\ne0, b\ne 0\]

Заметим, что в данном уравнении никогда не являются решениями те значения \(x\) , при которых \(\cos x=0\) или \(\sin x=0\) . Действительно, если \(\cos x=0\) , то, подставив вместо косинуса ноль в уравнение, получим: \(a\sin x=0\) , откуда следует, что и \(\sin x=0\) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если \(\cos x=0\) , то \(\sin x=\pm 1\) .

Аналогично и \(\sin x=0\) не является решением такого уравнения.

Значит, данное уравнение можно делить на \(\cos x\) или на \(\sin x\) . Разделим, например, на \(\cos x\) :

\(a \ \dfrac<\sin x><\cos x>+b \ \dfrac<\cos x><\cos x>=0\) , откуда имеем \(a\mathrm\, x+b=0 \Rightarrow \mathrm\, x=-\dfrac ba\)

Пример 6. Решить уравнение \(\sin x+\cos x=0\)

Разделим правую и левую части уравнения на \(\sin x\) :

\(1+\mathrm\, x=0 \Rightarrow \mathrm\, x=-1 \Rightarrow x=-\dfrac<\pi>4+\pi n, n\in\mathbb\)

\(\blacktriangleright\) Неоднородные тригонометрические уравнения первой степени: \[II.\quad <\Large>, a\ne0, b\ne 0, c\ne 0\]

Существует несколько способов решения подобных уравнений. Рассмотрим те из них, которые можно использовать для любого такого уравнения:

1 СПОСОБ: при помощи формул двойного угла для синуса и косинуса и основного тригонометрического тождества: \(<\large<\sin x=2\sin<\dfrac x2>\cos<\dfrac x2>, \qquad \cos x=\cos^2 <\dfrac x2>-\sin^2 <\dfrac x2>,\qquad c=c\cdot \Big(\sin^2 <\dfrac x2>+\cos^2 <\dfrac x2>\Big)>>\) данное уравнение сведется к уравнению \(I\) :

Пример 7. Решить уравнение \(\sin 2x-\sqrt3 \cos 2x=-1\)

Распишем \(\sin 2x=2\sin x\cos x, \ \cos 2x=\cos^2x-\sin^2 x, \ -1=-\sin^2 x-\cos^2x\) . Тогда уравнение примет вид:

\((1+\sqrt3)\sin^2x+2\sin x\cos x+(1-\sqrt3)\cos^2x=0\) . Данное уравнение с помощью деления на \(\cos^2x\) и замены \(\mathrm\,x=t\) сводится к:

\((1+\sqrt3)t^2+2t+1-\sqrt3=0\) . Корнями этого уравнения являются \(t_1=-1, \ t_2=\dfrac<\sqrt3-1><\sqrt3+1>=2-\sqrt3\) . Сделаем обратную замену:

2 СПОСОБ: при помощи формул выражения функций через тангенс половинного угла: \[\begin <|lc|cr|>\hline &&&\\ \sin<\alpha>=\dfrac<2\mathrm\, \dfrac<\alpha>2><1+\mathrm^2\, \dfrac<\alpha>2> &&& \cos<\alpha>=\dfrac<1-\mathrm^2\, \dfrac<\alpha>2><1+\mathrm^2\, \dfrac<\alpha>2>\\&&&\\ \hline \end\] уравнение сведется к квадратному уравнению относительно \(\mathrm\, \dfrac x2\)

Пример 8. Решить то же уравнение \(\sin 2x-\sqrt3 \cos 2x=-1\)

\(\dfrac<(\sqrt3+1)t^2+2t+1-\sqrt3><1+t^2>=0 \Rightarrow (\sqrt3+1)t^2+2t+1-\sqrt3=0\) (т.к. \(1+t^2\geqslant 1\) при всех \(t\) , то есть всегда \(\ne 0\) )

Таким образом, мы получили то же уравнение, что и, решая первым способом.

3 СПОСОБ: при помощи формулы вспомогательного угла.
\[<\large\,\sin (x+\phi),>> \quad \text <где >\cos \phi=\dfrac a<\sqrt>\]

Для использования данной формулы нам понадобятся формулы сложения углов: \[\begin <|lc|cr|>\hline &&&\\ \sin<(\alpha\pm \beta)>=\sin\alpha\cdot \cos\beta\pm \sin\beta\cdot \cos\alpha &&& \cos<(\alpha\pm \beta)>=\cos\alpha\cdot \cos\beta \mp \sin\alpha\cdot \sin\beta\\ &&&\\ \hline \end\]

Пример 9. Решить то же уравнение \(\sin 2x-\sqrt3 \cos 2x=-1\)

Т.к. мы решаем уравнение, то можно не преобразовывать левую часть, а просто разделить обе части уравнения на \(\sqrt<1^2+(-\sqrt3)^2>=2\) :

\(\dfrac12\sin 2x-\dfrac<\sqrt3>2\cos 2x=-\dfrac12\)

Заметим, что числа \(\dfrac12\) и \(\dfrac<\sqrt3>2\) получились табличные. Можно, например, взять за \(\dfrac12=\cos \dfrac<\pi>3, \ \dfrac<\sqrt3>2=\sin \dfrac<\pi>3\) . Тогда уравнение примет вид:

\(\sin 2x\cos \dfrac<\pi>3-\sin \dfrac<\pi>3\cos 2x=-\dfrac12 \Rightarrow \sin\left(2x-\dfrac<\pi>3\right)=-\dfrac12\)

Решениями данного уравнения являются:

Заметим, что при решении уравнения третьим способом мы добились “более красивого” ответа (хотя ответы, естественно, одинаковы), чем при решении первым или вторым способом (которые, по сути, приводят уравнение к одному и тому же виду).
Таким образом, не стоит пренебрегать третьим способом решения данного уравнения.

\(\blacktriangleright\) Если тригонометрическое уравнение можно свести к виду \[<\Large>, \text <где >a\ne 0, b\ne 0,\] то с помощью формулы \[<\large<(\sin x\pm\cos x)^2=1\pm2\sin x\cos x>> \ \ (*)\] данное уравнение можно свести к квадратному.

Для этого необходимо сделать замену \(t=\sin x\pm \cos x\) , тогда \(\sin x\cos x=\pm \dfrac2\) .

Заметим, что формула \((*)\) есть не что иное, как формула сокращенного умножения \((A\pm B)^2=A^2\pm 2AB+B^2\) при подстановке в нее \(A=\sin x, B=\cos x\) .

Пример 10. Решить уравнение \(3\sin 2x+3\cos 2x=16\sin x\cos^3x-8\sin x\cos x\) .

Вынесем общий множитель за скобки в правой части: \(3\sin 2x+3\cos 2x=8\sin x\cos x(2\cos^2 x-1)\) .
По формулам двойного угла \(2\sin x\cos x=\sin 2x, 2\cos^2x-1=\cos 2x\) имеем: \[3(\sin 2x+\cos 2x)=4\sin 2x\cos 2x\] Заметим, что полученное уравнение как раз записано в необходимом нам виде. Сделаем замену \(t=\sin 2x+\cos 2x\) , тогда \(\sin 2x\cos 2x=\dfrac2\) . Тогда уравнение примет вид: \[3t=2t^2-2 \Rightarrow 2t^2-3t-2=0\] Корнями данного уравнения являются \(t_1=2, t_2=-\dfrac12\) .

По формулам вспомогательного аргумента \(\sin2x+\cos 2x=\sqrt2\sin\left(2x+\dfrac<\pi>4\right)\) , следовательно, сделав обратную замену: \[\left[ \begin \begin &\sqrt2\sin\left(2x+\dfrac<\pi>4\right)=2\\[1ex] &\sqrt2\sin\left(2x+\dfrac<\pi>4\right)=-\dfrac12 \end \end \right. \Rightarrow \left[ \begin \begin &\sin\left(2x+\dfrac<\pi>4\right)=\sqrt2\\[1ex] &\sin\left(2x+\dfrac<\pi>4\right)=-\dfrac1 <2\sqrt2>\end \end \right.\] Первое уравнение корней не имеет, т.к. область значений синуса находится в пределах от \(-1\) до \(1\) . Значит: \(\sin\left(2x+\dfrac<\pi>4\right)=-\dfrac1 <2\sqrt2>\Rightarrow \left[ \begin \begin &2x+\dfrac<\pi>4=-\arcsin <\dfrac1<2\sqrt2>>+2\pi n\\[1ex] &2x+\dfrac<\pi>4=\pi+\arcsin <\dfrac1<2\sqrt2>>+2\pi n \end \end \right. \Rightarrow \)
\(\Rightarrow \left[ \begin \begin &x=-\dfrac12\arcsin <\dfrac1<2\sqrt2>>-\dfrac<\pi>8+\pi n\\[1ex] &x=\dfrac<3\pi>8+\dfrac12\arcsin <\dfrac1<2\sqrt2>>+\pi n \end \end \right. \ \ n\in\mathbb\)

\(\blacktriangleright\) Формулы сокращенного умножения в тригонометрическом варианте:

\(I\) Квадрат суммы или разности \((A\pm B)^2=A^2\pm 2AB+B^2\) :

\((\sin x\pm \cos x)^2=\sin^2 x\pm 2\sin x\cos x+\cos^2x=(\sin^2 x+\cos^2 x)\pm 2\sin x\cos x=1\pm \sin 2x\)

\(II\) Разность квадратов \(A^2-B^2=(A-B)(A+B)\) :

\((\cos x-\sin x)(\cos x+\sin x)=\cos^2x-\sin^2x=\cos 2x\)

\(III\) Сумма или разность кубов \(A^3\pm B^3=(A\pm B)(A^2\mp AB+B^2)\) :

\(\sin^3x\pm \cos^3x=(\sin x\pm \cos x)(\sin^2x\mp \sin x\cos x+\cos^2x)=(\sin x\pm \cos x)(1\mp \sin x\cos x)=\)

\(=(\sin x\pm \cos x)(1\mp \frac12\sin 2x)\)

\(IV\) Куб суммы или разности \((A\pm B)^3=A^3\pm B^3\pm 3AB(A\pm B)\) :

\((\sin x\pm \cos x)^3=(\sin x\pm \cos x)(\sin x\pm \cos x)^2=(\sin x\pm \cos x)(1\pm \sin 2x)\) (по первой формуле)


источники:

http://math100.ru/prof-ege13-4/

http://shkolkovo.net/theory/24