Решение тригонометрических уравнений с разными степенями

Решение тригонометрических уравнений с разными степенями

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Способы решения тригонометрических уравнений. 10-й класс

Разделы: Математика

Класс: 10

«Уравнения будут существовать вечно».

Цели урока:

  • Образовательные:
    • углубление понимания методов решения тригонометрических уравнений;
    • сформировать навыки различать, правильно отбирать способы решения тригонометрических уравнений.
  • Воспитательные:
    • воспитание познавательного интереса к учебному процессу;
    • формирование умения анализировать поставленную задачу;
    • способствовать улучшению психологического климата в классе.
  • Развивающие:
    • способствовать развитию навыка самостоятельного приобретения знаний;
    • способствовать умению учащихся аргументировать свою точку зрения;

Оборудование: плакат с основными тригонометрическими формулами, компьютер, проектор, экран.

1 урок

I. Актуализация опорных знаний

Устно решить уравнения:

1) cosx = 1;
2) 2 cosx = 1;
3) cosx = –;
4) sin2x = 0;
5) sinx = –;
6) sinx = ;
7) tgx = ;
8) cos 2 x – sin 2 x = 0

1) х = 2к;
2) х = ± + 2к;
3) х =± + 2к;
4) х = к;
5) х = (–1) + к;
6) х = (–1) + 2к;
7) х = + к;
8) х = + к; к Z.

II. Изучение нового материала

– Сегодня мы с вами рассмотрим более сложные тригонометрические уравнения. Рассмотрим 10 способов их решения. Далее будет два урока для закрепления, и на следующий урок будет проверочная работа. На стенде «К уроку» вывешены задания, аналогичные которым будут на проверочной работе, надо их прорешать до проверочной работы. (Накануне, перед проверочной работой, вывесить на стенде решения этих заданий).

Итак, переходим к рассмотрению способов решения тригонометрических уравнений. Одни из этих способов вам, наверное, покажутся трудными, а другие – лёгкими, т.к. некоторыми приёмами решения уравнений вы уже владеете.

Четверо учащихся класса получили индивидуальное задание: разобраться и показать вам 4 способа решения тригонометрических уравнений.

(Выступающие учащиеся заранее подготовили слайды. Остальные учащиеся класса записывают основные этапы решения уравнений в тетрадь.)

1 ученик: 1 способ. Решение уравнений разложением на множители

sin 4x = 3 cos 2x

Для решения уравнения воспользуемся формулой синуса двойного угла sin 2 = 2 sin cos
2 sin 2x cos 2x – 3 cos 2x = 0,
cos 2x (2 sin 2x – 3) = 0. Произведение этих множителей равно нулю, если хотя бы один из множителей будет равен нулю.

2x = + к, к Z или sin 2x = 1,5 – нет решений, т.к | sin| 1
x = + к; к Z.
Ответ: x = + к , к Z.

2 ученик. 2 способ. Решение уравнений преобразованием суммы или разности тригонометрических функций в произведение

cos 3x + sin 2x – sin 4x = 0.

Для решения уравнения воспользуемся формулой sin– sin = 2 sin сos

cos 3x + 2 sin сos = 0,

сos 3x – 2 sin x cos 3x = 0,

cos 3x (1 – 2 sinx) = 0. Полученное уравнение равносильно совокупности двух уравнений:

Множество решений второго уравнения полностью входит во множество решений первого уравнения. Значит

Ответ:

3 ученик. 3 способ. Решение уравнений преобразованием произведения тригонометрических функций в сумму

sin 5x cos 3x = sin 6x cos2x.

Для решения уравнения воспользуемся формулой

Ответ:

4 ученик. 4 способ. Решение уравнений, сводящихся к квадратным уравнениям

3 sin x – 2 cos 2 x = 0,
3 sin x – 2 (1 – sin 2 x ) = 0,
2 sin 2 x + 3 sin x – 2 = 0,

Пусть sin x = t, где | t |. Получим квадратное уравнение 2t 2 + 3t – 2 = 0,

. Таким образом . не удовлетворяет условию | t |.

Значит sin x = . Поэтому .

Ответ:

III. Закрепление изученного по учебнику А. Н. Колмогорова

1. № 164 (а), 167 (а) (квадратное уравнение)
2. № 168 (а) (разложение на множители)
3. № 174 (а) (преобразование суммы в произведение)
4. (преобразование произведения в сумму)

(В конце урока показать решение этих уравнений на экране для проверки)

№ 164 (а)

2 sin 2 x + sin x – 1 = 0.
Пусть sin x = t, | t | 1. Тогда
2 t 2 + t – 1 = 0, t = – 1, t= . Откуда

Ответ: –.

№ 167 (а)

3 tg 2 x + 2 tg x – 1 = 0.

Пусть tg x = 1, тогда получим уравнение 3 t 2 + 2 t – 1 = 0.

Ответ:

№ 168 (а )

Ответ:

№ 174 (а )

Ответ:

Решить уравнение:

Ответ:

2 урок (урок-лекция)

IV. Изучение нового материала (продолжение)

– Итак, продолжим изучение способов решения тригонометрических уравнений.

5 способ. Решение однородных тригонометрических уравнений

Уравнения вида a sin x + b cos x = 0, где a и b – некоторые числа, называются однородными уравнениями первой степени относительно sin x или cos x.

sin x – cos x = 0. Разделим обе части уравнения на cos x. Так можно сделать, потери корня не произойдёт, т.к. , если cos x = 0, то sin x = 0. Но это противоречит основному тригонометрическому тождеству sin 2 x + cos 2 x = 1.

Получим tg x – 1 = 0.

Ответ:

Уравнения вида a sin 2 x + bcos 2 x + c sin x cos x = 0 , где a, b, c –некоторые числа, называются однородными уравнениями второй степени относительно sin x или cos x.

sin 2 x – 3 sin x cos x + 2 cos 2 = 0. Разделим обе части уравнения на cos x, при этом потери корня не произойдёт, т.к. cos x = 0 не является корнем данного уравнения.

tg 2 x – 3tg x + 2 = 0.

Пусть tg x = t. D = 9 – 8 = 1.

тогда Отсюда tg x = 2 или tg x = 1.

В итоге x = arctg 2 + , x =

Ответ: arctg 2 + ,

Рассмотрим ещё одно уравнение: 3 sin 2 x – 3 sin x cos x + 4 cos 2 x = 2.
Преобразуем правую часть уравнения в виде 2 = 2 · 1 = 2 · (sin 2 x + cos 2 x). Тогда получим:
3sin 2 x – 3sin x cos x + 4cos 2 x = 2 · (sin 2 x + cos 2 x),
3sin 2 x – 3sin x cos x + 4cos 2 x – 2sin 2 x – 2 cos 2 x = 0,
sin 2 x – 3sin x cos x + 2cos 2 x = 0. (Получили 2 уравнение, которое уже разобрали).

Ответ: arctg 2 + k,

6 способ. Решение линейных тригонометрических уравнений

Линейным тригонометрическим уравнением называется уравнение вида a sin x + b cos x = с, где a, b, c – некоторые числа.

Рассмотрим уравнение sin x + cos x = – 1.
Перепишем уравнение в виде:

Учитывая, что и, получим:

Ответ:

7 способ. Введение дополнительного аргумента

Выражение a cos x + b sin x можно преобразовать:

.

(это преобразование мы уже ранее использовали при упрощении тригонометрических выражений)

Введём дополнительный аргумент – угол такой, что

Тогда

Рассмотрим уравнение: 3 sinx + 4 cosx = 1.

Учтём, что . Тогда получим

0,6 sin x + 0,8 cosx = 1. Введём дополнительный аргумент – угол такой, что , т.е. = arcsin 0,6. Далее получим

Ответ: – arcsin 0,8 + +

8 способ. Уравнения вида Р

Такого рода уравнения удобно решать при помощи введения вспомогательной переменной t = sin x ± cosx. Тогда 1 ± 2 sinx cosx = t 2 .

Решить уравнение: sinx + cosx + 4 sinx cosx – 1 = 0.

Введём новую переменную t = sinx + cosx, тогда t 2 = sin 2 x + 2sin x cos x + cos 2 = 1 + 2 sin x cos x Откуда sin x cos x = . Следовательно получим:

t + 2 (t 2 – 1) – 1 = 0.
2 t 2 + t – 2 – 1 = 0,
2 t 2 + t – 3 = 0..Решив уравнение, получим = 1, =.

sinx + cosx = 1 или sinx + cosx =

Ответ:

9 способ. Решение уравнений, содержащих тригонометрические функции под знаком радикала.

Решить уравнение:

В соответствии с общим правилом решения иррациональных уравнений вида, запишем систему, равносильную исходному уравнению:

Решим уравнение 1 – cos x = 1 – cos 2 x.

1 – cos x = 1 – cos 2 x,
1 – cos x – (1 – cos x) (1 + cos x) = 0,
(1 – cos x) (1 – 1 – cos x) = 0,
– (1 – cos x) cos x = 0.

Условию удовлетворяют только решения

Ответ:

10 способ. Решение уравнений с использованием ограниченности тригонометрических функций y = sin x и y = cos x.

Решить уравнение: sin x + sin 9x = 2.
Так как при любых значениях х sin x 1, то данное уравнение равносильно системе:

Решение системы

Ответ:

V. Итог урока

Таким образом мы сегодня рассмотрели 10 различных способов решения тригонометрических уравнений. Безусловно, многие из приведённых задач могут быть решены несколькими способами.

(Пятерым наиболее подготовленным учащимся , а также всем желающим дать индивидуальное творческое задание: найти различные способы решения тригонометрического уравнения sinx + cosx = 1 )

Домашнее задание: № 164 -170 (в, г).

Способы решения тригонометрических уравнений

Министерство образования и молодёжной политики Чувашской Республики

Муниципальное образовательное учреждение

«Средняя общеобразовательная школа №6 г. Чебоксары»

Способы решения тригонометрических уравнений

МОУ «Средняя общеобразовательная школа №6

Методическая разработка по теме «Способы решения тригонометрических уравнений». В средней школе на изучение данной темы отводится незначительное количество часов. Эта разработка изучит, расширит и углубит математические знания по данной теме.

На экзаменах по математике для поступающих в ВУЗы, олимпиадах часто встречаются задания на решение тригонометрических уравнений.

Все приводимые способы направлены на развитие познавательного интереса к предмету, знакомящие учащихся с новыми идеями и методами, расширяющие представления об изучаемой теме в основной школе.

Уравнения, предлагаемые в данной разработке, интересны, красивы, носят прикладной характер, что позволяет повысить учебную мотивацию учащихся и интерес к предмету и вызвать желание узнать больше.

Основные цели методической разработки:

· знакомство учащихся с основными приемами и методами решения тригонометрических уравнений;

· развитие навыков применения теоретических сведений по данной теме на практике в различных проявлениях;

· развитие творческих способностей;

· повышение интереса к предмету;

· повторение и обобщение знаний по теме «Способы решения тригонометрических уравнений;

· оказание помощи учащимся систематизировании уравнений и нахождении рациональных приемов решения.

Особенность методической разработки.

Использование материала в работе даст положительные результаты при подготовке школьников к сдаче ЕГЭ по математике.

1. Уравнения, приводимые к алгебраическим. . . . . . . . . . . . .. . . . . . . . . . . . . . . .4

2. Уравнения, решаемые разложением на множители. . . . . . . . . . . . . . . . . . . . . .5

3. Однородные уравнения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4. Уравнения, решаемые с помощью формул сложения тригонометрических функций. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5. Уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

6. Уравнения, решаемые с помощью формул понижения степени. . . . . . . . . . . .8

7. Уравнения вида .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

8. Уравнения смешанного типа. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

9. Задания для промежуточного и итогового контроля результатов обучения. .13

10. Тригонометрическое уравнение на ЕГЭ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

11. Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1. Уравнение .

Если для любого t. Если , то формула корней уравнения такова:

2. Уравнение .

При уравнение не имеет решений, так как для любого . Если |a|≤1,то формула для записи всех решений уравнения такова: Удобно записывать не двумя, а одной формулой:

3. Уравнение . Решение данного уравнения имеет вид:.

4. Уравнение . Решение данного уравнения имеет вид:

Способы решения тригонометрических уравнений.

I. Уравнения, приводимые к алгебраическим

Пример. Решить уравнение

Решение. Воспользуемся тем, что . Тогда заданное уравнение можно переписать в виде . После понятных преобразований получим . Введем новую переменную . Тогда уравнение примет вид , откуда находим . Значит,. Из этих уравнений находим, соответственно,

Уравнения для самостоятельного решения:

II. Уравнения, решаемые разложением на множители

Смысл этого метода: если уравнение удается преобразовать к виду , то задача сводится к решению двух уравнений, то есть к решению совокупности уравнений: .

Пример. Решить уравнение .

Решение. Имеем . Значит, приходим к совокупности уравнений . Из первого уравнения находим . Из второго уравнения находим .

Уравнения для самостоятельного решения:

III. Однородные уравнения.

Определение. Уравнение вида, где называют однородным тригонометрическим уравнением первой степени, уравнение вида ¸называют однородным тригонометрическим уравнением второй степени.

Итак, дано уравнение . Разделив обе части уравнения почленно на , получим .

Но, внимание! Делить обе части уравнения на одно и то же выражение можно только в том случае, когда мы уверены, что это выражение нигде не обращается в нуль (на 0 делить нельзя). Уверены ли мы, что в рассматриваемом случае отличен от 0? Давайте проанализируем. Предположим, что cos x =0. Тогда однородное уравнение asinx+bcosx=0 примет вид asinx=0¸ то есть sinx=0¸ так как a≠0. Получается, что и cosx=0¸ и sinx=0¸ а это невозможно, так как sinx и cosx обращается в нуль в различных точках. Итак, в однородном тригонометрическом уравнении первой степени деление обеих частей уравнения на cosx— вполне благополучная операция.

Пример 1. Решить уравнение 2sinx-3cosx= 0.

Решение. Разделим обе части уравнения почленно на cosx¸ получим . Рассмотрим теперь однородное тригонометрическое уравнение второй степени . Если коэффициент a отличен от нуля, то есть в уравнении содержится член sin2x с каким-то коэффициентом, отличным от нуля, то, рассуждая как и выше, нетрудно убедиться в том, что при интересующих нас значениях переменной cos x не обращается в нуль, а потому можно обе части уравнения разделить почленно на .

Это — квадратное уравнение относительно новой переменной z= tgx .

Пример 2. Решить уравнение .

Решение. Разделим обе части уравнения почленно на cos2 x, получим Введя новую переменную получим, . Откуда находим z=1, z=2. Значит, либо tgx=1, либо tgx=2. Из первого уравнения находим Из второго уравнения находим .

Уравнения для самостоятельного решения:

IV. Уравнения, решаемые с помощью формул сложения тригонометрических функций.

позволяют сумму или разность синусов или косинусов разложить на множители.

Пример. Решить уравнения: sin5x + sinx=0;

Решение. Преобразовав сумму синусов в произведение, получим

Значит, либо , откуда находим , либо cos2x=0, откуда находим

Уравнения для самостоятельного решения:

V. Уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму

при решении тригонометрических уравнений.

Уравнения для самостоятельного решения:

VI. Уравнения, решаемые с помощью формул понижения степени

Пример. Решить уравнение

Уравнения для самостоятельного решения:

VII. Уравнения вида

Преобразование выражения Итак, Аналогично можно выражение преобразовать к виду .

Пример.

Здесь Имеем Введём вспомогательный аргумент , удовлетворяющий соотношениям например, . Тогда

Уравнения для самостоятельного решения:

VIII. Уравнения смешанного типа

1. Решите уравнения:

Выбор корней проведём на тригонометрической окружности

y

Ответ:

а)

Ответ:

в)

Ответ:

б)

Ответ:

г)

Ответ:

2. Решите уравнения.

y

Не удовлетворяет условию

Выберем те значения x, которые удовлетворяют условию

Ответ:

а)

Ответ:

в)

Ответ:

б)

Ответ:

г)

Ответ:

3. Решите уравнение.

Данное уравнение равносильно системе:

Решим второе уравнение системы:

не удовлетворяет условию

Выберем те значения х, которые удовлетворяют условию .

Ответ:

4. Решите уравнения.

Число корней на .

Выбор корней проведём на тригонометрической окружности.

Число решений на равно 5.

а)

Найти число решений на .

б) .

Найти число решений на

в)

Найти число решений на .

г) .

Найти число решений на .

5. Основной идеей решения следующих заданий является выражение синуса или косинуса через тангенс или котангенс половинного аргумента (или наоборот). При этом следует иметь в виду, что в формулах область определения «левых частей» равенств – все действительные числа, а область определения «правых частей» — .

Поэтому переход от одного уравнения к другому с использованием этих формул, вообще говоря, сужает ОДЗ на множество π.

Аналогичная ситуация с формулами

Вообще, использование формул, у которых ОДЗ «левых» и «правых» частей не совпадают, может привести либо к потере, либо к появлению посторонних корней.

Примерами таких формул являются:

Ответ:

а) . Ответ: .

в) .

Ответ: .

б) . Ответ: .

г) .

Ответ: .

IX. Задания для промежуточного контроля результатов обучения (ответы даны в скобках).

Уравнения, приводимые к алгебраическим.

Уравнения, решаемые способом разложения на множители.

Уравнения, решаемые с помощью формул сложения тригонометрических функций.

Уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму.

Уравнения, решаемые с помощью формул понижения степени.

Уравнения вида .

Уравнения смешанного типа.

1.

2.Найти наименьший корень уравнения на интервале

3.

Тест. Решение тригонометрических уравнений.

1. Найдите корни уравнения на интервале .

а) ; б) ; в) .

2. Найдите наибольший отрицательный корень уравнения

а) ; б) ; в) .

3. Решите уравнение: и найдите сумму корней, принадлежащих интервалу

а) ; б) ; в) .

4. Решите уравнение: и найдите сумму корней, принадлежащих интервалу .

а) ; б) ; в) .

Задания для итогового контроля результатов обучения.

1. Решите уравнения:

а) ; б) ;

в) ; г) ;

д) ; е) .

2. Найдите сумму корней управления

на промежутке .

3. Укажите количество корней уравнения

4. Решите уравнения:

а) ;

б) .

1. а) ; б) ; в) ; г) ;

д) ; е) . 2. 16. 3. 3. 4. а) ;

б) .

X. Тригонометрическое уравнение на ЕГЭ.

Решите уравнение . (С2,2007г.)

ОДЗ уравнения:

Используя способ разложения на множители, получим

или .

не удовлетворяет условию ОДЗ уравнения.

.

Используя способ решения однородного уравнения первой степени, получим:

С учетом ОДЗ уравнения решение данного уравнения имеет вид:

1. , , . Углубленное изучение курса алгебры и математического анализа для 10-11 класса, Москва, Просвещение, 1997 г.

2. , . Факультативный курс по математике: Решение задач: Учебное пособие для 11 кл. средней школы – М., Просвещение, 1999.

3. Журнал «Математика в школе», 2006, № 10.

4. , , . Учебно-тренировочные материалы для подготовки к единому государственному экзамену. Математика. – М. Интеллект-Центр, 2002-2007 г.

5. . Математика. Гтовимся к ЕГ, 2005.

6. . Алгебра и начала анализа; Учебник для 10-11 кл. средней школы – 2-е изд. – М. Просвещение, 2000.

7. , , . Алгебра и начала анализа: Учебник для 10-11 кл. средней школы – 4-е изд. – М. Просвещение, 2002.

8. и др. Алгебра и начала анализа.10-11 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. Ч2: Задач. Для общеобразоват. учреждений.- 5-е изд.-М.:Мнемозина,2004.


источники:

http://urok.1sept.ru/articles/593441

http://pandia.ru/text/80/263/1615.php