Решение тригонометрических уравнений второго порядка

Решение тригонометрических уравнений второго порядка

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Тригонометрические уравнения второго порядка

Разделы: Математика

ЦЕЛЬ: Закрепить полученные знания при решении тригонометрических уравнений второго порядка.

ЗАДАЧИ:

  • Способствовать развитию навыков самостоятельного применения знаний.
  • Развивать коммуникативные качества.
  • Развивать умение анализировать.
  • Развивать навыки самоконтроля.
  • Развивать мышление и речь.
  • Развивать внимание и память.
  • Воспитание самостоятельности и ответственности за качество своих знаний.

ТИП УРОКА: Систематизация и обобщение.

ОБОРУДОВАНИЕ: Компьютер, доска, раздаточный материал.

Ход урока

СЛАЙД 1

I. ОРГАНИЗАЦИОННЫЙ МОМЕНТ.

ЗДРАВСТВУЙТЕ, УВАЖАЕМЫЕ ГОСТИ.

Сегодня у нас немного необычный урок, а необычный он тем, что на нашем уроке присутствуют учителя с других школ города. И мы с вами должны показать, как мы научились применять полученные знания при решении тригонометрических уравнений.

СЛАЙД 2

Перед Вами лежит «Рабочая карта урока» (ПРИЛОЖЕНИЕ 1). Как обычно, за каждый этап урока, Вы вносите определённое количество баллов. В конце урока подведём итоги и выставим себе оценки.

Обратите внимание, что такие этапы урока, как тренировка памяти и ребусы не оцениваются.

II. ТРЕНИРОВКА ВНИМАНИЯ. СЛАЙД 3

а) ИНДИВИДУАЛЬНАЯ РАБОТА:

Перед Вами на слайде появится таблица, состоящая из 9 ячеек.

Ваша задача в течении 10 секунд запомнить содержимое всех ячеек и по моей команде занести в таблицу, которая лежит у Вас на парте. (ПРИЛОЖЕНИЕ 2)

Желаю успеха!

б) ТРЕНИРОВКА МЫШЛЕНИЯ. СЛАЙД 4

разгадайте ребусы (ПРИЛОЖЕНИЕ 3)

Если Вы не можете отгадать, то в конверте можете найти подсказку. (ПРИЛОЖЕНИЕ 4)

Если Вы не обращались за подсказкой, то поставьте себе в оценочный лист 3 балла.

Если обращались к подсказке, то 2 балла.

III. УСТНЫЙ СЧЁТ.

СЛАЙД 5

Древнегреческий поэт Нивей утверждал, что математику нельзя изучать, наблюдая, как это делает сосед, поэтому во время повторения решения простейших тригонометрических уравнений будут задействованы все ученицы нашего класса.

Я приготовила для Вас очередное изречение о жизни (ПОЯСНИТЕЛЬНАЯ ЗАПИСКА), решив карточки, которые лежат перед Вами, мы прочтём это изречение. (ПРИЛОЖЕНИЕ 5)

ЖИЗНЬ – ЭТО ШКОЛА, НО СПЕШИТЬ С ЕЁ ОКОНЧАНИЕМ НЕ СЛЕДУЕТ.
(Эмиль Кроткий, русский поэт сатирик)

IV. Интеллектуальная разминка.

СЛАЙД 7

Вы отвечаете только «да» или «нет». Если, Вы считаете, что ответ «да», то поднимаете правую руку, если ответ «нет», то левую руку.

  1. sin 2 a+cos 2 a=1– это основное тригонометрическое тождество?
  2. Квадратное уравнения имеет два корня, когда D=0?
  3. arcsina-это число, которое принадлежит отрезку [-π/2 ; π/2]?
  4. Произведение двух множителей равно нулю, когда хотя бы один множитель равен нулю, а второй множитель имеет смысл?
  5. arcos(– a) = π + arcos a?
  6. y=tgx -периодическая функция с основным периодом 2?
  7. Уравнение вида asinx + bcosx=0 называется однородным тригонометрическим уравнением первой степени?

V. РЕШЕНИЕ УРАВНЕНИЙ.

СЛАЙД 8

Знаменитый физик Альберт Эйнштейн, говорил так: «Мне приходится делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее. Политика существует только для данного момента, а уравнения будут существовать вечно».

Вот и мы с вами займёмся решением уравнений. СЛАЙД 9

(Два человека решают у доски на обратной стороне, класс по вариантам под копирку).

I вариантII вариант
sin 2 x+2sinxcosx-3cos 2 x=0sinxcosx+cos 2 x=0

Если кто забыл алгоритм решения данных уравнений, учебник стр. 110.

Ученицы, которые работали у доски, рассказывают как решали данные уравнения, после того как класс сдал листочки с решениями. Класс исправляет ошибки, если таковые имеются.

КРИТЕРИИ ОЦЕНИВАНИЯ: СЛАЙД 10

  • 5 баллов – если выполнено всё верно. Не допущено ни одной ошибки.
  • 4 балла – если допущена ошибка в вычислительных действиях.
  • 3 балла – если допущена ошибка в вычислительных действиях, в вычислении дискриминанта, в вынесении общего множителя за скобки.
  • 2 балла – если допущена ошибка при решении простейшего тригонометрического уравнения.
  • 0 баллов – вы не понимаете, как решать уравнения данного вида.

VI. ПОДВЕДЕНИЕ ИТОГОВ.

Выставление оценок (пока учитель проходит и выставляет оценки, ученики разгадывают ребус). (ПРИЛОЖЕНИЕ 6)

Всё в наших руках, поэтому их нельзя опускать.
(Коко Шанель)

VII. РЕФЛЕКСИЯ.

СЛАЙД 12

В начале урока мы с вами поставили цель закрепить полученные знания при решении тригонометрических уравнений второго порядка. В целом цель была достигнута, о чём говорят ваши оценки, но особенно хотелось бы отметить…

Девушки, я попрошу Вас оценить своё самочувствие на уроке и выбрать смайлик, который Вам ближе по ощущениям.

И прекрасное высказывание КОКО ШАНЕЛЬ донести до своего дома.

СПАСИБО ЗА РАБОТУ! СЛАЙД 13

Тригонометрические уравнения — формулы, решения, примеры

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Простейшие тригонометрические уравнения

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| \leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| \leq 1` имеет бесконечное множество решений.

Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + \pi n, n \in Z`

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + \pi n, n \in Z`

Формулы корней тригонометрических уравнений в таблице

Для синуса:Для косинуса:Для тангенса и котангенса:Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью тригонометрических формул преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

Решение. Используя формулы приведения, имеем:

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt `:

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a>=cos \varphi`, ` \frac b> =sin \varphi`, `\frac c>=C`, тогда:

`cos \varphi sin x + sin \varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt <3^2+4^2>`, получим:

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos \varphi sin x+sin \varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `\frac <1+cos x>=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.


источники:

http://urok.1sept.ru/articles/635595

http://matemonline.com/dh/%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F/trigonometricheskie-uravnenija/