Решение целых уравнений сводящихся к квадратным уравнениям

Решение уравнений, сводящихся к квадратным

Биквадратные уравнения

Биквадратным уравнением называется уравнение вида:

$$ ax^4+bx^2+c = 0, a \neq 0 $$

Алгоритм решения биквадратного уравнения

Шаг 1. Ввести новую переменную: $z = x^2 \ge 0$.

Переписать уравнение для новой переменной: $az^2+bz+c = 0$

Шаг 2. Решить полученное квадратное уравнение.

Если $D \gt 0$, $z_ <1,2>= \frac<-b \pm \sqrt> <2a>$. Проверить условие $z ≥ 0$, если положительных корней нет, решений нет, переход на шаг 4.

Если D = 0,$z_0 = -\frac<2a>$. Проверить условие $z \ge 0$, если корень отрицательный, решений нет, переход на шаг 4.

Если $D \lt 0$, решений нет, переход на шаг 4.

Шаг 3.Если после шага 2 остались положительные корни, найти x: $x = \pm \sqrt$.

Шаг 4. Работа завершена.

Шаг 1. $z = x^2 \ge 0, z^2+7z-30 = 0$

$z_1 = -10 \lt 0, z_2 = 3 \gt 0 $

Шаг 3. Находим корни из положительного $z: x_ <1,2>= \pm \sqrt<3>$

Метод разложения на множители

Решение уравнений, в которые переменная x входит с различными натуральными степенями и вещественными коэффициентами, по существу, является поиском корней многочлена.

Число $x_0$ называют корнем многочлена $P_n (x) = a_n x^n+a_ x^ + ⋯ + a_1 x+a_0$ если $P_n (x_0 ) = 0$.

Для многочлена $P_n$ (x) произвольной степени n справедливо следующее.

Если $x = x_0$ является корнем многочлена $P_n$ (x), то $P_n (x) = (x-x_0) P_ (x)$, где $P_ (x)$ — многочлен степени n-1.

Таким образом, разными способами находя корни и формируя скобки, можно постепенно добиваться понижения степени «оставшегося» многочлена, пока не будут найдены все корни.

При разложении многочлена

  • множители вида (x-a) называют линейными множителями ;
  • множители вида $ (x^2+bx+c)$, для которых $D \lt 0$, называют неприводимыми квадратичными множителями .

Любой многочлен $P_n$ (x) можно представить в виде конечного числа линейных и/или неприводимых квадратичных множителей.

Причём, такое представление единственно с точностью до порядка множителей.

Для разложения многочленов на множители применяются разные методы:

  • вынесение общего множителя за скобку (см. §19 справочника для 7 класса);
  • группировка (см. §20 справочника для 7 класса);
  • формулы сокращенного умножения (см. §25 справочника для 7 класса);
  • метод неопределённых коэффициентов;
  • выделение полного квадрата и т.п.

Решим уравнение $2x^3-x^2-8x+4 = 0$.

Раскладываем на множители: $x^2 (2x-1)-4(2x-1) = 0$

$$ (x^2-4)(2x-1) = 0 \Rightarrow (x-2)(x+2)(2x-1) = 0 $$

Корни уравнения: $x_1 = 2, x_2 = -2, x_3 = \frac<1><2>$

Метод замены переменной

Замена переменной – это уравнение, с помощью которого можно упростить исходное уравнение, и перейти к решению системы из двух более простых уравнений:

$Исходное \quad сложное \quad уравнение \iff <\left\< \begin Новая \quad переменная \quad (урав. \quad связи \quad со \quad старой \quad переменной \\ Исходное \quad урав. \quad в \quad «упрощ.» \quad виде \end \right.>$

Например, для биквадратных уравнений:

$$ ax^4+bx^2+c = 0 \iff <\left\< \begin z = x^2 \ge 0 \\ az^2+bz+c = 0 \end \right.> $$

Можно предложить аналогичные схемы для других уравнений:

$$ ax+b \sqrt+c = 0 \iff <\left\< \begin z = \sqrt \ge 0 \\ az^2+bz+c = 0 \end \right.> $$

И, в общем виде, для любой рациональной степени n:

$$ ax^<2n>+bx^n+c = 0 \iff <\left\< \begin z = x^n \\ az^2+bz+c = 0 \end \right.> , n \in \Bbb Q $$

В других случаях замена переменной не настолько очевидна.

Но при удачном выборе, этот метод очень упрощает задачу.

Раскроем скобки:$ x^2-x = \frac<24>$. Сделаем замену:

$$ z = \frac<24> \Rightarrow z(z-2) = 24 \Rightarrow z^2-2z-24 = 0 \Rightarrow (z-6)(z+4) = 0 \Rightarrow \left[ \begin z_1 = -4 \\ z_2 = 6 \end \right.$$

Возвращаемся к исходной переменной x:

$$ \left[ \begin x^2-x = -4 \\ x^2-x = 6 \end \right. \Rightarrow \left[ \begin x^2-x+4 = 0 \\ x^2-x-6 = 0 \end \right. \Rightarrow \left[ \begin D \lt 0, x \in \varnothing \\ (x-3)(x+2) = 0 \end \right. \Rightarrow \left[ \begin x_1 = -2 \\ x_2 = 3 \end \right. $$

При использовании метода замены переменной не забывайте возвращаться к исходной переменной.

Выделение полного квадрата

Метод выделения полного квадрата является одним из методов разложения на множители. Его идея – представить многочлен в виде разности квадратов двух других многочленов степенью пониже, и разложить разность на две скобки:

$$ P_n (x) = Q_k^2 (x)-R_m^2 (x) = (Q_k (x)-R_m (x))(Q_k (x)+R_m (x)) $$

Такое разложение не всегда возможно.

Рассмотрим выделение полного квадрата для квадратного трёхчлена:

$$ = a \Biggl(x+\frac <2a>\Biggr)^2 — \frac <4a>= a \Biggl(x+ \frac <2a>\Biggr)^2- \frac<4a>, D = b^2-4ac $$

Нами выделен полный квадрат $(x+\frac<2a>)^2$.

Данное выражение используется для построения и анализа графиков парабол (см. §28 данного справочника).

А его разложение на две линейные скобки, известное как теорема Виета (см. §26 данного справочника), возможно только при условии $D \ge 0$.

Решить уравнение $x^4+4x^2-1 = 0$

Выделим полный квадрат и разложим на множители:

$$ \left[ \begin x^2+2-\sqrt <5>= 0 \\ x^2+2+\sqrt <5>= 0 \end \right. \Rightarrow \left[ \begin x^2 = \sqrt <5>-2 \gt 0 \\ x^2 = -(2+\sqrt<5>) \lt 0 \end \right. \Rightarrow x_1,2 = \pm \sqrt<\sqrt<5>-2> $$

Примеры

Пример 1. Решите биквадратные уравнения:

Делаем замену: $2x^4+7x^2-4 = 0 \iff <\left\< \begin z = x^2 \ge 0 \\ 2z^2+7z-4 = 0 \end \right.>$

Решаем квадратное уравнение: $D = 7^2-4 \cdot 2 \cdot (-4) = 49+32 = 81 = 9^2$

$$ z = \frac<-7 \pm 9> <4>= \left[ \begin z_1 = -4 \lt 0 \\ z_2 = \frac<1> <2>\gt 0 \end \right. $$

Выбираем положительный z и возвращаемся к исходной переменной x:

Делаем замену: $(x+3)^4-10(x+3)^2+24 = 0 \iff <\left\< \begin z = (x+3)^2 \ge 0 \\ z^2-10z+24 = 0 \end \right.>$

Решаем квадратное уравнение: $z^2-10z+24 = 0 \Rightarrow (z-4)(z-6) = 0 \Rightarrow \left[ \begin z_1 = 4 \\ z_2 = 6 \end \right.$

Берём оба корня и возвращаемся к исходной переменной.

$$ \left[ \begin (x+3)^2 = 4 \\ (x+3)^2 = 6 \end \right. \Rightarrow \left[ \begin x+3 = \pm \sqrt <4>\\ x+3 = \pm \sqrt <6>\end \right. \Rightarrow \left[ \begin x_ <1,2>= -3 \pm 2 \\ x_ <3,4>= -3 \pm \sqrt <6>\end \right. \Rightarrow \left[ \begin x_1 = -5 \\ x_2 = -1 \\ x_ <3,4>= -3 \pm \sqrt <6>\end \right. $$

Пример 2. Решите уравнения аналогичные биквадратным:

Делаем замену: $x+4 \sqrt-60 = 0 \iff <\left\< \begin z = \sqrt \ge 0 \\ z^2+4z-60 = 0 \end \right.>$

Решаем квадратное уравнение: $ z^2+4z-60 = 0 \Rightarrow (z+10)(z-6) = 0 \Rightarrow \left[ \begin z_1 = -10 \\ z_2 = 6 \end \right.$

Выбираем положительный корень и возвращаемся к исходной переменной:

Делаем замену: $(x-1)^6-7(x-1)^3-8 = 0 \iff <\left\< \begin z = (x-1)^3 \\ z^2-7z-8 = 0 \end \right.>$

Решаем квадратное уравнение: $ z^2-7z-8 = 0 \Rightarrow (z+1)(z-8) = 0 \Rightarrow \left[ \begin z_1 = -1 \\ z_2 = 8 \end \right.$

При замене куба знак z может быть любым, берём оба корня и возвращаемся к исходной переменной.

$$ \left[ \begin (x-1)^3 = -1 \\ (x-1)^3 = 8 \end \right. \Rightarrow \left[ \begin x-1 = -1 \\ x-1 = 2 \end \right. \Rightarrow \left[ \begin x_1 = 0 \\ x_2 = 3 \end \right. $$

Пример 3. Решите уравнения с помощью замены переменной:

Заметим, что $(x+3)^2 = x^2+6x+9$. Получаем:

$$ (x^2+6x)^2-(x^2+6x+9) = 33 \Rightarrow (x^2+6x)^2-(x^2+6x)-42 = 0 $$

Решаем квадратное уравнение: $ z^2-z-42 = 0 \Rightarrow (z+6)(z-7) = 0 \Rightarrow \left[ \begin z_1 = -6 \\ z_2 = 7 \end \right.$

Берём оба корня и возвращаемся к исходной переменной.

$$ \left[ \begin x^2+6x = -6 \\ x^2+6x = 7 \end \right. \Rightarrow \left[ \begin x^2+6x+6 = 0 \\ x^2+6x-7=0 \end \right. \Rightarrow \left[ \begin D = 12, x = \frac<-6 \pm 2 \sqrt<3>> <2>\\ (x+7)(x-1) = 0 \end \right. \Rightarrow \left[ \begin x_ <1,2>= -3 \pm \sqrt <3>\\ x_3 = -7 \\ x_4 = 1 \end \right. $$

Делаем замену: $ \frac<4> + \frac<5> = 2 \iff \left[ \begin z = x^2+3 \ge 3 \\ \frac<4> + \frac<5> = 2 \end \right.$

Решаем уравнение относительно z:

$$ \frac<4> + \frac<5> = 2 \Rightarrow \frac<4(z+1)+5z> = \frac<2> <1>\Rightarrow 4(z+1)+5z = 2z(z+1) $$

$$ 2z^2+2z-9z-4 = 0 \Rightarrow 2z^2-7z-4 = 0 $$

$$ D = 7^2-4 \cdot 2 \cdot (-4) = 49+32 = 81 = 9^2 $$

$$ z = \frac<7 \pm 9> <4>= \left[ \begin z_1 = — \frac<1> <2>\lt 3 \\ z_2 = 4 \gt 3 \end \right. $$

Выбираем корень больше 3 и возвращаемся к исходной переменной:

$$ x^2+3 = 4 \Rightarrow x^2 = 1 \Rightarrow x_ <1,2>= \pm 1$$

Пример 4*. Решите уравнения:

Приведём это уравнение к биквадратному.

В линейных множителях (x+a) выберем все a =

Найдем их среднее арифметическое (см. §52 справочника для 7 класса)

Замена переменных $z = x+a_$:

Упрощаем уравнение, используя формулу разности квадратов:

$$ (z^2-9)(z^2-1) = 945 \Rightarrow z^4-10z^2+9 = 945 \Rightarrow z^4-10z^2-936 = 0 $$

Получили биквадратное уравнение.

Делаем замену: $z^4-10z^2-936 = 0 \iff <\left\< \begin t = z^2 \ge 0 \\ t^2-10t-936 = 0 \end \right.> $

Решаем квадратное уравнение:

$$ D = 100+4 \cdot 936 = 3844 = 62^2, t = \frac<10 \pm 62> <2>= \left[ \begin t_1 = -26 \lt 0 \\ t_2 = 36 \gt 0 \end \right. $$

Выбираем положительный корень и возвращаемся к переменной z:

$$ z = \pm \sqrt= \pm \sqrt <36>= \pm 6 $$

Возвращаемся к исходной переменной x:

$$ x = z-4 = \pm 6-4 = \left[ \begin x_1 = -10 \\ x_2 = 2 \end \right. $$

$$ z- \frac<1> =2,1 |\times z (z \neq 0) $$

$$ z^2-2,1z-1 = 0 \Rightarrow D = 2,1^2+4 = 8,41 = 2,9^2; z = \frac<2,1 \pm 2,9> <2>= \left[ \begin z_1 = -0,4 \\ z_2 = 2,5 \end \right. $$

Берём оба корня и возвращаемся к исходной переменной.

$$ \left[ \begin \frac = -0,4 \\ \frac = 2,5 \end \right. \Rightarrow \left[ \begin x^2+1 = -0,4x \\x^2+1 = 2,5x \end \right. \Rightarrow \left[ \begin x^2+0,4x+1 = 0 \\ x^2-2,5x+1 = 0 \end \right. $$

В первом уравнении $D = 0,4^2-4 \lt 0$, решений нет.

Во втором уравнении (x-2)(x-1/2) = 0 $\Rightarrow \left[ \begin x_1 = \frac<1> <2>\\ x_2 = 2 \end \right.$

Уравнения, сводящиеся к квадратным уравнениям:
трехчленные уравнения и уравнения
вида
(ax + b)(ax + b + c)(ax +
+ b
+ 2c)(ax + b + 3c) = d , левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии

Существует ряд уравнений, которые удается решить при помощи сведения их к квадратным уравнениям.

К таким уравнениям, в частности, относятся уравнения следующих типов:

Трёхчленные уравнения
Уравнения 4-ой степени, левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии
Возвратные (симметричные) уравнения 3-ей степени
Возвратные (симметричные) уравнения 4-ой степени
Обобщенные возвратные уравнения 4-ой степени

Замечание . Уравнения, носящие название «Биквадратные уравнения» , относятся к типу «Трехчленные уравнения» .

Трехчленные уравнения

Трёхчленными уравнениями называют уравнения вида

a f 2 (x)+ b f (x) + c = 0,(1)

а также уравнения вида

(2)

где a, b, c – заданные числа, а f (x) – некоторая функция.

Для того, чтобы решить трехчленное уравнения вида (1), обозначим

y = f (x),(3)

тогда уравнение (1) станет квадратным уравнением относительно переменной y :

ay 2 + by + c = 0 .(4)

Затем найдем корни уравнения (4), а после этого, подставив каждый из найденных корней в равенство (3), решим полученное уравнение относительно x .

Для того, чтобы решить трехчленное уравнение вида (2), сначала введем обозначение (3), а затем умножим полученное уравнение на знаменатель. В результате уравнение (2) примет вид (4), а схема решения уравнения (4) уже описана выше.

Покажем, как это осуществляется на примерах.

Пример 1 . Решить уравнение

(x 2 – 2x) 2 –
– 2(x 2 – 2x) – 3 = 0 .
(5)

Решение . Если обозначить

y = x 2 – 2x ,(6)

то уравнение (5) превратится в квадратное уравнение

y 2 – 2y – 3 = 0 .(7)

В первом случае из равенства (6) получаем:

Во втором случае из равенства (6) получаем:

Пример 2 . Решить уравнение

(8)

Решение . Если обозначить

,(9)

то уравнение (8) превратится в квадратное уравнение

которое эквивалентно уравнению

2y 2 – 3 y – 2 = 0 .(10)

В первом случае из равенства (9) получаем уравнение:

Во втором случае из равенства (9) получаем:

Ответ :

Пример 3 . Решить уравнение

Решение . Если обозначить

(12)

то уравнение (11) превратится в квадратное уравнение

которое эквивалентно уравнению

y 2 – 5y – 6 = 0 .(13)

В первом случае из равенства (12) получаем уравнение:

Во втором случае из равенства (12) получаем:

Ответ :

Пример 4 . Решить биквадратное уравнение

x 4 – x 2 – 12 = 0 .(14)

Решение . Если обозначить

y = x 2 ,(15)

то уравнение (14) превратится в квадратное уравнение

y 2 – y – 12 = 0 .(16)

В первом случае из равенства (15) получаем уравнение:

которое решений не имеет.

Во втором случае из равенства (15) получаем:

Пример 5 . Решить уравнение

Решение . Если обозначить

y = x 2 – 3x,(18)

уравнение (17) превращается в уравнение

которое при умножении на y принимает вид

y 2 + 2y – 8 = 0 .(19)

В первом случае из равенства (18) получаем квадратное уравнение:

которое решений не имеет.

Во втором случае из равенства (18) получаем:

Ответ :

Пример 6 . Решить уравнение

Решение . Если обозначить

,(21)

уравнение (20) превращается в уравнение

которое при умножении на y принимает вид

3y 2 – 2y – 1 = 0 .(22)

В первом случае из равенства (21) получаем уравнение

Во втором случае из равенства (21) получаем:

Уравнения 4-ой степени, левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии

(ax + b)(ax + b +
+ c
)(ax +
+ b
+ 2c)(ax +
+ b
+ 3c) = d ,
(23)

где a, b, c, d – заданные числа, и заметим, что левая часть этого уравнения представляет собой произведение четырёх последовательных членов арифметической прогрессии, первый член которой равен ax+b , а разность равна c .

Схема решения уравнений вида (23) заключается в следующем.

y = ax + b.(24)

Тогда уравнение (23) примет вид:

y (y + c)(y +
+ 2c)(y + 3c) = d .
(25)

Перегруппируем сомножители в левой части уравнения (25) следующим образом:

[y (y + 3c)][(y +
+ c
)(y + 2c)] = d .
(26)

Если раскрыть круглые скобки внутри каждой квадратной скобки из левой части уравнения (26), то получим:

[y 2 + 3cy][y 2 +
+ 3cy + 2c 2 ] = d .
(27)

Если теперь в уравнении (27) обозначить

z = y 2 + 3cy ,(28)

то уравнение (27) станеи квадратным уравнением

z 2 + 2c 2 zd = 0 .(29)

Для того, чтобы найти корни уравнения (23), остаётся решить уравнение (29), затем для каждого корня уравнения (29) решить уравнение (28) относительно y , а затем в каждом из полученных случаев решить уравнение (24) относительно x .

Пример 7 . Решить уравнение

(2x + 3)(2x + 5)(2x +
+
7)(2x + 9) = 384 .
(30)

Решение .Если обозначить

y = 2x + 3,(31)

уравнение (30) превращается в уравнение

y (y + 2)(y +
+
4)(y + 6) = 384 .
(32)

Перегруппируем сомножители в левой части уравнения (32):

[y (y + 6)][(y +
+ 2)(y + 4)] = 384 .
(33)

Если раскрыть круглые скобки внутри каждой квадратной скобки из левой части уравнения (33), то уравнение (33) примет вид:

[y 2 + 6y][y 2 +
+ 6y + 8] = 384 .
(34)

Если теперь обозначить

z = y 2 + 6y ,(35)

то уравнение (34) станет квадратным уравнением

z 2 + 8 z – 384 = 0 .(36)

В первом случае из равенства (35) получаем уравнение:

которое корней не имеет.

Во втором случае из равенства (35) получаем:

В первом из этих случаев, из равенства (31) получаем:

Во втором случае из равенства (31) получаем:

Ответ :

Рациональные уравнения. Семь типов рациональных уравнений, сводящихся к квадратным

В этой статье я покажу вам алгоритмы решения семи типов рациональных уравнений, которые с помощью замены переменных сводятся к квадратным. В большинстве случаев преобразования, которые приводят к замене, весьма нетривиальны, и самостоятельно о них догадаться достаточно трудно.

Для каждого типа уравнений я объясню, как в нем делать замену переменной, а затем в соответствующем видеоуроке покажу подробное решение.

У вас есть возможность продолжить решение уравнений самостоятельно, а затем сверить свое решение с видеоуроком.

1 . (x-1)(x-7)(x-4)(x+2)=40

Заметим, что в левой части уравнения стоит произведение четырех скобок, а в правой — число.

1. Сгруппируем скобки по две так, чтобы сумма свободных членов была одинаковой.

2. Перемножим их.

3. Введем замену переменной.

В нашем уравнении сгруппируем первую скобку с третьей, а вторую с четвертой,так как (-1)+(-4)=(-7)+2:

В этом месте замена переменной становится очевидной:

Получаем уравнение

Ответ:

  • 2 .

    Уравнение этого типа похоже на предыдущее с одним отличием: в правой части уравнения стоит произведение числа на . И решается оно совсем по-другому:

    1. Группируем скобки по две так, чтобы произведение свободных членов было одинаковым.

    2. Перемножаем каждую пару скобок.

    3. Из каждого множителя выносим за скобку х.

    4. Делим обе части уравнения на .

    5. Вводим замену переменной.

    В этом уравнении сгруппируем первую скобку с четвертой, а вторую с третьей, так как :

    Заметим, что в каждой скобке коэффициент при и свободный член одинаковые. Вынесем из каждой скобки множитель :

    Так как х=0 не является корнем исходного уравнения, разделим обе части уравнения на . Получим:

    Теперь можем ввести замену переменной:

    Получим уравнение:

    Ответ:

  • 3 .

    Заметим, что в знаменателях обоих дробей стоят квадратные трехчлены, у которых старший коэффициент и свободный член одинаковые. Вынесем, как и в уравнении второго типа х за скобку. Получим:

    Разделим числитель и знаменатель каждой дроби на х:

    Теперь можем ввести замену переменной:

    Получим уравнение относительно переменной t:

    Ответ:

  • 4 .

    Заметим, что коэффициенты уравнения симметричны относительно центрального. Такое уравнение называется возвратным .

    Чтобы его решить,

    1. Разделим обе части уравнения на (Мы можем это сделать, так как х=0 не является корнем уравнения.) Получим:

    2. Сгруппируем слагаемые таким образом:

    3. В каждой группе вынесем за скобку общий множитель:

    4. Введем замену:

    5. Выразим через t выражение :

    Отсюда

    Получим уравнение относительно t:

    Ответ:

  • 5. Однородные уравнения.

    Уравнения, имеющие структуру однородного, могут встретиться при решении показательных, логарифмических и тригонометрических уравнений, поэтому ее нужно уметь распознавать.

    Однородные уравнения имеют такую структуру:

    В этом равенстве А, В и С — числа, а квадратиком и кружочком обозначены одинаковые выражения. То есть в левой части однородного уравнения стоит сумма одночленов, имеющих одинаковую степень ( в данном случае степень одночленов равна 2), и свободный член отсутствует.

    Чтобы решить однородное уравнение, разделим обе части на

    Или на

    Или на

    Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

    Пойдем первым путем. Получим уравнение:

    Сократим дроби, получим:

    Теперь мы вводим замену переменной:

    И решаем квадратное уравнение относительно замены:

    .

    При решении уравнения я обычно придерживаюсь такой тактики: нужно уменьшить количество различных выражений, в состав которых входит неизвестное ( принцип «бритвы Оккама» — не нужно множить сущности без нужды), а для этого помогает разложить выражения с неизвестным на множители. Разложим выражение, стоящее в правой части уравнения на множители.

    Перенесем все влево, получим:

    Теперь мы видим, что перед нами однородное уравнение. Разделим обе части уравнения на , предварительно проверив, что х=1 не является корнем исходного уравнения.

    Теперь самое время ввести замену переменной:

    Получим квадратное уравнение:

    Ответ:

    6 .

    Это уравнение имеет такую структуру:

    Решается с помощью введения вот такой замены переменной:

    В нашем уравнении ,тогда . Введем замену:

    Теперь возведем каждую скобку в четвертую степень, используя треугольник Паскаля:

    Упростим выражение и получим биквадратное уравнение относительно t:

    Ответ: или

  • 7 .

    Это уравнение имеет такую структуру:

    Чтобы его решить, нужно в левой части уравнения выделить полный квадрат.

    Чтобы выделить полный квдарат, нужно прибавить или вычесть удовоенное произведение. Тогда мы получим квадрат суммы ли разности. Для удачной замены переменной это имеет определяющее значение.

    Начнем с нахождения удвоенного произведения. Именно оно будет ключиком для замены переменной. В нашем уравнении удвоенное произведение равно

    Теперь прикинем, что нам удобнее иметь — квадрат суммы или разности. Рассмотрим, для начала сумму выражений:

    Отлично! это выражении в точности равно удвоенному произведению. Тогда, чтобы в скобках получить квадрат суммы, нужно прибавить и вычесть удвоенное произведение:

    [/pmath]

    Введем замену:

    Получим квадратное уравнение:

    Ответ:


  • источники:

    http://www.resolventa.ru/spr/algebra/red1.htm

    http://ege-ok.ru/2012/04/20/ratsionalnyie-uravneniya-sem-tipov-ratsionalnyih-uravneniy-svodyashhihsya-k-kvadratnyim