Решение уравнений 3 и4 степени

Решение уравнений 3-й и 4-й степеней

Разделы: Математика

  1. Систематизировать и обобщить знания и умения по теме: Решения уравнений третьей и четвертой степени.
  2. Углубить знания, выполнив ряд заданий, часть из которых не знакома или по своему типу, или способу решения.
  3. Формирование интереса к математике через изучение новых глав математики, воспитание графической культуры через построение графиков уравнений.

Тип урока: комбинированный.

Наглядность: таблица «Теорема Виета».

Ход урока

1. Устный счет

а) Чему равен остаток от деления многочлена рn (х) = аnх n + аn-1х n-1 + . + а1х 1 + a0на двучлен х-а?

б) Сколько корней может иметь кубическое уравнение?

в) С помощью чего мы решаем уравнение третьей и четвертой степени?

г) Если b четное число в квадратном уравнение, то чему равен Д и х12

2. Самостоятельная работа (в группах)

Составить уравнение, если известны корни (ответы к заданиям закодированы) Используется «Теорема Виета»

Решение уравнений 4-ой степени. Метод Феррари

Схема метода Феррари
Приведение уравнений 4-ой степени
Разложение на множители. Кубическая резольвента
Пример решения уравнения 4-ой степени

Схема метода Феррари

Целью данного раздела является изложение метода Феррари , с помощью которого можно решать уравнения четвёртой степени

a0x 4 + a1x 3 + a2x 2 +
+ a3x + a4 = 0,
(1)

где a0, a1, a2, a3, a4 – произвольные вещественные числа, причем

Метод Феррари состоит из двух этапов.

На первом этапе уравнения вида (1) приводятся к уравнениям четвертой степени, у которых отсутствует член с третьей степенью неизвестного.

На втором этапе полученные уравнения решаются при помощи разложения на множители, однако для того, чтобы найти требуемое разложение на множители, приходится решать кубические уравнения.

Приведение уравнений 4-ой степени

Разделим уравнение (1) на старший коэффициент a0 . Тогда оно примет вид

x 4 + ax 3 + bx 2 +
+ cx + d = 0,
(2)

где a, b, c, d – произвольные вещественные числа.

Сделаем в уравнении (2) замену

(3)

где y – новая переменная.

то уравнение (2) принимает вид

В результате уравнение (2) принимает вид

Если ввести обозначения

то уравнение (4) примет вид

y 4 + py 2 + qy + r = 0,(5)

где p, q, r – вещественные числа.

Первый этап метода Феррари завершён.

Разложение на множители. Кубическая резольвента

Добавив и вычитая в левой части уравнения (5) выражение

где s – некоторое число, которое мы определим чуть позже, из (5) получим

Следовательно, уравнение (5) принимает вид

Если теперь выбрать число s так, чтобы оно являлось каким-нибудь решением уравнения

то уравнение (6) примет вид

Избавляясь от знаменателя, уравнение (7) можно переписать в виде

или, раскрыв скобки, — в виде

Полученное кубическое уравнение (9), эквивалентное уравнению (7), называют кубической резольвентой уравнения 4-ой степени (5).

Если какое-нибудь решение кубической резольвенты (9) найдено, то уравнение (8) можно решить, разложив его левую часть на множители с помощью формулы сокращенного умножения «Разность квадратов».

Таким образом, для решения уравнения (8) остаётся решить квадратное уравнение

а также квадратное уравнение

Вывод метода Феррари завершен.

Пример решения уравнения 4-ой степени

Пример . Решить уравнение

x 4 + 4x 3 – 4x 2 –
– 20x – 5 = 0.
(12)

Решение . В соответствии с (3) сделаем в уравнении (12) замену

x = y – 1.(13)

то в результате замены (13) уравнение (12) принимает вид

y 4 – 10y 2 – 4y + 8 = 0.(14)

В соответствии с (5) для коэффициентов уравнения (14) справедливы равенства

p = – 10, q = – 4, r = 8.(15)

В силу (9) и (15) кубической резольвентой для уравнения (14) служит уравнение

которое при сокращении на 2 принимает вид:

s 3 + 5s 2 – 8s – 42 = 0.(16)
s = – 3.(17)

Подставляя значения (15) и (17) в формулу (10), получаем уравнение

Подставляя значения (15) и (17) в формулу (11), получаем уравнение

В завершение, воспользовавшись формулой (13), из (18) и (19) находим корни уравнения (12):

Замечание . При решении примера мы попутно получили разложение левой части уравнения (14) на множители:

y 4 – 10y 2 – 4y + 8 =
= (y 2 – 2y – 4) (y 2 +
+ 2y – 2).
(20)

Предоставляем посетителю нашего сайта возможность убедиться в справедливости равенства (19) в качестве несложного упражнения.

Алгебраические уравнения и способы их решения. Уравнения третьей и четвертой степени

Что делать, если вам – например, на Профильном ЕГЭ по математике – встретилось не квадратное уравнение, а кубическое? Или даже уравнение четвертой степени? Ведь для уравнений третьей, четвертой и более высоких степеней нет таких простых формул, как для квадратного уравнения.

В этой статье – способы решения сложных алгебраических уравнений. Замена переменной, использование симметрии и даже деление многочлена на многочлен.

Вспомним основные понятия.

Корень уравнения – такое число, которое мы можем подставить вместо переменной в уравнение и получить истинное равенство.

Например, число 3 – корень уравнения 2x = 6.

Решить уравнение – значит найти его корни или доказать, что их нет.

Равносильными называются уравнения, множества решений которых совпадают. Другими словами, у них одни и те же корни.

Например, уравнения и равносильны. Их корни совпадают: или

Замена переменной – ключ к решению многих задач.

Если приводить обе части к одному знаменателю, получим уравнение четвертой степени. Вряд ли мы с ним справимся.

Сделаем замену Тогда

С новой переменной уравнение стало проще:

Умножим обе части на 10t. Получим квадратное уравнение:

Корни этого уравнения: или

Вернемся к переменной

Дискриминант этого уравнения отрицателен, корней нет.

Если , то Получим квадратное уравнение для :

У этого уравнения два корня: или Это ответ.

Не будем спешить раскрывать скобки. Ведь раскрыв их, мы получили бы уравнение четвертной степени.

Посмотрим на уравнение внимательно.

На координатной прямой точки 1; 3; –5; –7 расположены симметрично относительно точки

Сделаем замену , тогда .

Мы выразили все «скобки», то есть все множители, через новую переменную. Вот что это дает:

И еще одна замена: .

Обычное квадратное уравнение. Замечательно!

Подберем его корни по теореме Виета. Заметим, что

Если , то нет решений.

Если , то Тогда или

Дальше – еще интереснее.

3. Решите уравнение

Сделаем замену . То, что в правой части в скобках, заменили на новую переменную.

Получили квадратное уравнение:

Следующее уравнение решим с помощью группировки слагаемых.

4. Решите уравнение

Разложим левую часть уравнения на множители. Сгруппируем слагаемые:

Первые два слагаемых – сумма кубов. Применим формулу: . Получим:

Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Записывается это так:

У нас появилось новое обозначение: — знак совокупности.

Такой знак означает «или».

Запись читается как « или или ».

Решая уравнения и особенно неравенства, мы будем постоянно пользоваться знаками системы и совокупности. Мы записываем решения в виде цепочки равносильных переходов. Для сложных уравнений и неравенств это единственный способ прийти к ответу и не запутаться.

5. Решите уравнение

Разложить левую часть на множители с первой попытки не удается.

Оказывается, если уравнение третьей (четвертой, пятой…) степени имеет целые корни, то находятся они среди делителей свободного члена (слагаемого, не содержащего x). В данном случае – среди целых делителей числа 24.

Выпишем целые делители числа 24:

1; –1; 2; –2; 3; –3; 4; –4; 6; –6; 8; –8; 12; –12; 24; –24

Подставляя их по очереди в уравнение, при получаем верное равенство:

Это значит, что левую часть уравнения можно разложить на множители:

Чтобы найти , поделим выражение на . В столбик. Так же, как мы делим друг на друга числа.

Немного непривычно, да? Потренируйтесь – у вас получится!

6. Решите уравнение

А если сделать замену ?

Получаем квадратное уравнение: . Удачная замена!

Если , то , нет решений.

7. Решите уравнение

Разложить на множители? Но как? И замена не видна сразу. Посмотрим на уравнение внимательно. Его коэффициенты: 1, — 5, 4, — 5, 1.

Такое уравнение называется симметрическим.

Разделим обе его части на . Мы можем это сделать, поскольку не является корнем нашего уравнения.


источники:

http://www.resolventa.ru/spr/algebra/ferrary.htm

http://ege-study.ru/algebraicheskie-uravneniya-i-sposoby-ix-resheniya-uravneniya-tretej-i-chetvertoj-stepeni/