Решение уравнений cosx a на окружности

Арккосинус. Решение уравнения cos x=a

п.1. Понятие арккосинуса

В записи \(y=cosx\) аргумент x — это значение угла (в градусах или радианах), функция y – косинус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному косинусу найти угол. Но одному значению косинуса соответствует бесконечное количество углов. Например, если \(cosx=1\), то \(x=2\pi k,\ k\in\mathbb\); \(cosx=0\), то \(x=\frac\pi2+\pi k,\ k\in\mathbb\) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором косинус принимает все значения из [-1;1], но только один раз: \(0\leq x\leq \pi\) (верхняя половина числовой окружности).

\(arccos\frac12=\frac\pi3,\ \ arccos\left(-\frac<\sqrt<3>><2>\right)=\frac<5\pi><6>\)
\(arccos2\) – не существует, т.к. 2> 1

п.2. График и свойства функции y=arccosx


1. Область определения \(-1\leq x\leq1\) .
2. Функция ограничена сверху и снизу \(0\leq arccosx\leq \pi\) . Область значений \(y\in[0;\pi]\)
3. Максимальное значение \(y_=\pi\) достигается в точке x =-1
Минимальное значение \(y_=0\) достигается в точке x =1
4. Функция убывает на области определения.
5. Функция непрерывна на области определения.

п.3. Уравнение cos⁡x=a

Значениями арккосинуса могут быть только углы от 0 до π (180°). А как выразить другие углы через арккосинус?

Углы в нижней части числовой окружности записывают через отрицательный арккосинус. А углы, которые превышают π по модулю, записывают через сумму арккосинуса и величины, которая ‘не помещается» в область значений арккосинуса.

1) Решим уравнение \(cosx=\frac12\).
Найдем точку \(\frac12\) в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках, соответствующих углам \(\pm\frac\pi3\) — это базовые корни.
Если взять верхний корень \(\frac\pi3\) и прибавить к нему полный оборот \(\frac\pi3+2\pi=\frac<7\pi><3>\), косинус полученного угла \(cos\frac<7\pi><3>=\frac12\), т.е. \(\frac<7\pi><3>\) также является корнем уравнения. Корнями будут и все другие углы вида \(\frac\pi3+2\pi k\) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида \(-\frac\pi3+2\pi k\).
Получаем ответ: \(x=\pm\frac\pi3+2\pi k\)

Заметим, что полученный ответ является записью вида
\(x=\pm arccos\frac12+2\pi k\)
А т.к. арккосинус для \(\frac12\) точно известен и равен \(\frac\pi3\), то мы его и пишем в ответе.
Но так бывает далеко не всегда.

2) Решим уравнение \(cosx=0,8\)

Найдем точку 0,8 в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках.
По определению верхняя точка – это угол, равный arccos⁡0,8.
Тогда нижняя точка – это тот же угол, но отложенный в отрицательном направлении обхода числовой окружности, т.е. (–arccos⁡0,8).
Добавление или вычитание полных оборотов к каждому из решений даст другие корни.
Получаем ответ:
\(x=\pm arccos0,8+2\pi k\)

п.4. Формула арккосинуса отрицательного аргумента

Докажем полезную на практике формулу для \(arccos(-a)\).

По построению: $$ \begin \angle DA’O=\angle BAO=\angle CAO=90^<\circ>\\ OD=OB=OC=1\\ OA’=OA=a \end \Rightarrow $$ (по катету и гипотенузе) \begin \Delta DA’O=\Delta BAO=\Delta CAO\Rightarrow\\ \Rightarrow \angle DOC=\angle A’OA-\alpha+\alpha=\angle A’OA=180^<\circ>=\pi\\ -arccosa+\pi=arccos(-a) \end

п.5. Примеры

Пример 1. Найдите функцию, обратную арккосинусу. Постройте графики арккосинуса и найденной функции в одной системе координат.

Для \(y=arccosx\) область определения \(-1\leq x\leq 1\), область значений \(0\leq y\leq \pi\).
Обратная функция \(y=cosx\) должна иметь ограниченную область определения \(0\leq x\leq \pi\) и область значений \(-1\leq y\leq 1\).
Строим графики:

Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) \(cos x=-1\)

\(x=\pi+2\pi k\)
б) \(cos x=\frac<\sqrt<2>><2>\)

\(x=\pm\frac\pi4+2\pi k\)
в) \(cos x=0\)

\(x=\pm\frac\pi2+2\pi k=\frac\pi2+\pi k\)
г) \(cos x=\sqrt<2>\)

\(\sqrt<2>\gt 1,\ \ x\in\varnothing\)
Решений нет
д) \(cos x=0,7\)

\(x=\pm arccos(0,7)+2\pi k\)
e) \(cos x=-0,2\)

\(x=\pm arccos(-0,2)+2\pi k\)

Пример 3. Запишите в порядке возрастания: $$ arccos0,8;\ \ arccos(-0,5);\ \ arccos\frac\pi7 $$

Способ 1. Решение с помощью числовой окружности

Отмечаем на оси косинусов (ось OX) точки с абсциссами 0,8; -0,5; \(\frac\pi7\approx 0,45\)
Значения арккосинусов (углы) считываются на верхней половине окружности: чем меньше косинус (от 1 до -1), тем больше угол (от 0 до π).
Получаем: \(\angle A_1OA\lt\angle A_2OA\angle A_3OA\)
$$ arccos0,8\lt arccos\frac\pi7\lt arccos(-0,5) $$Способ 2. Решение с помощью графика \(y=arccosx\)

Отмечаем на оси OX аргументы 0,8; -0,5; \(\frac\pi7\approx 0,45\). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арккосинусов по возрастанию: $$ arccos0,8\lt arccos\frac\pi7\lt arccos(-0,5) $$Способ 3. Аналитический
Арккосинус – функция убывающая: чем больше аргумент, тем меньше функция.
Поэтому располагаем данные в условии аргументы по убыванию: 0,8; \(\frac\pi7\); -0,5.
И записываем арккосинусы по возрастанию: \(arccos0,8\lt arccos\frac\pi7\lt arccos(-0,5)\)

Пример 4*. Решите уравнения:
\(a)\ arccos(x^2-3x+3)=0\) \begin x^2-3x+3=cos0=1\\ x^2-3x+2=0\\ (x-2)(x-1)=0\\ x_1=1,\ x_2=2 \end Ответ:

\(б)\ arccos^2x-arccosx-6=0\)
\( \text<ОДЗ:>\ -1\leq x\leq 1 \)
Замена переменных: \(t=arccos x,\ 0\leq t\leq \pi\)
Решаем квадратное уравнение: $$ t^2-t-6=0\Rightarrow (t-3)(t+2)=0\Rightarrow \left[ \begin t_1=3\\ t_2=-2\lt 0 — \text <не подходит>\end \right. $$ Возвращаемся к исходной переменной: \begin arccosx=3\\ x=cos3 \end Ответ: cos3

\(в)\ arccos^2x-\pi arccosx+\frac<2\pi^2><9>=0\)
\( \text<ОДЗ:>\ -1\leq x\leq 1 \)
Замена переменных: \(t=arccos x,\ 0\leq t\leq \pi\)
Решаем квадратное уравнение: \begin t^2-\pi t+\frac<2\pi^2><9>=0\\ D=(\pi^2)-4\cdot \frac<2\pi^2><9>=\frac<\pi^2><9>,\ \ \sqrt=\frac\pi3\\ \left[ \begin t_1=\frac<\pi-\frac\pi3><2>=\frac\pi3\\ t_2=\frac<\pi+\frac\pi3><2>=\frac<2\pi> <3>\end \right. \Rightarrow \left[ \begin arccosx_1=\frac\pi3\\ arccosx_2=\frac<2\pi> <3>\end \right. \Rightarrow \left[ \begin x_1=cos\left(\frac\pi3\right)=\frac12\\ x_2=cos\left(\frac<2\pi><3>\right)=-\frac12 \end \right. \end Ответ: \(\left\<\pm\frac12\right\>\)

Узнать ещё

Знание — сила. Познавательная информация

a»>cosx>a

Рассмотрим решение тригонометрических неравенств вида cosx>a на единичной окружности.

Косинус — это абсцисса точки. Значит, cosx=a в точках пересечения единичной окружности и прямой x=a (прямая, параллельная оси oy), cosx>a справа от этой прямой, cosxa, нам нужна часть окружности, расположенная правее прямой y=a. Соответственно, от взаимного расположения окружности и этой прямой зависит решение неравенства cosx>a.

1) cosx>a при 0

На единичной окружности отмечает точки пересечения ее с прямой y=a. Первая точка — arccos a. Чтобы найти вторую, рассуждаем так: решения неравенства cosx>a лежат справа от этой прямой (заштриховываем соответствующую дугу окружности). Поэтому, чтобы попасть из 1й точки во вторую, идем по часовой стрелке. При таком обходе угол уменьшается. Доходим до нуля, дальше — отрицательные углы. Вторую точку отделяет от нуля такой же угол, что и первую. Но поскольку мы шли по часовой стрелке, ее берем со знаком минус.

Интервал записываем по возрастанию, поэтому сначала идет -arccos a, потом уже arccos a. С учетом периодичности синуса, к каждому из концов интервала прибавляем 2пn, где n — целое число (n принадлежит Z). Если неравенство нестрогое, точки закрашиваем и включаем в ответ (с квадратными скобками).

2) cosx>-a при 0

Рассуждения аналогичны предыдущему случаю. Отличие — нужно искать arccos(-a) (чуть позже я расскажу, как легко запомнить арккосинусы отрицательных чисел).

3) cosx>0

4) cosx>-1

За исключением одной точки,вся окружность лежит правее прямой y=a. Чтобы записать ответ в виде интервала, первой точкой берем -п. Поскольку во 2ю попадаем через полный оборот окружности, то есть через 2п, то -п +2п=п. К обоим концам интервала прибавляем 2пn.

В этом случае точки исключать не нужно, x — любое число: (-∞;+∞).

Единственной точкой, удовлетворяющей данному условию, является 0. С учетом периодичности косинуса, решение — множество точек x=2пn.

7) cosx>a при a>1

Единичная окружность полностью лежит слева от прямой y=a, поэтому при таких a нет ни одной точки, удовлетворяющей условию cosx>a. Значит, решений нет.

8) cosx>-a при a>1

Единичная окружность целиком лежит правее прямой y=a, поэтому x — любое число: (-∞;+∞).

И в заключении — конкретный пример решения неравенства вида cosx>a:

Тригонометрические уравнения. Как решать тригонометрические уравнения?

Тригонометрические уравнения – уравнения, содержащие переменную под знаком тригонометрических функций.

Если проще: это уравнения, в которых неизвестные (иксы) или выражения с ними находятся внутри синусов , косинусов , тангенсов и котангенсов .

Как решать тригонометрические уравнения:

Любое тригонометрическое уравнение нужно стремиться свести к одному из видов:

где \(t\) – выражение с иксом, \(a\) – число. Такие тригонометрические уравнения называются простейшими. Их легко решать с помощью числовой окружности ( тригонометрического круга ) или специальных формул:

\(\sin ⁡x=a\) \(⇔\) \( \left[ \beginx=\arcsin a+2πn, n∈Z\\ x=π-\arcsin a+2πl, l∈Z\end\right.\)
если \(a∈[-1;1]\)

Инфографику о решении простейших тригонометрических уравнений смотри здесь: \(sinx=a\) , \(cosx=a\) , \(tgx=a\) и \(ctgx=a\) .

Пример. Решите тригонометрическое уравнение \(\sin⁡x=-\)\(\frac<1><2>\).
Решение:

Решим уравнение с помощью числовой окружности. Для этого:
1) Построим оси.
2) Построим окружность.
3) На оси синусов (оси \(y\)) отметим точку \(-\) \(\frac<1><2>\) .
4) Проведем перпендикуляр к оси синусов через эту точку.
5) Отметим точки пересечения перпендикуляра и окружности.
6)Подпишем значения этих точек: \(-\) \(\frac<π><6>\) ,\(-\) \(\frac<5π><6>\) .
7) Запишем все значения соответствующие этим точкам с помощью формулы \(x=t+2πk\), \(k∈Z\):
\(x=-\) \(\frac<π><6>\) \(+2πk\), \(k∈Z\); \(x=-\) \(\frac<5π><6>\) \(+2πn\), \(n∈Z\)

Что означает каждый символ в формуле корней тригонометрических уравнений смотри в видео .

Внимание! Уравнения \(\sin⁡x=a\) и \(\cos⁡x=a\) не имеют решений, если \(a ϵ (-∞;-1)∪(1;∞)\). Потому что синус и косинус при любых икс больше или равны \(-1\) и меньше или равны \(1\):

Пример. Решить уравнение \(\cos⁡x=-1,1\).
Решение: \(-1,1 \(\frac<π><4>\) , \(\frac<5π><4>\)
7) Запишем все значения этих точек. Так как они находятся друг от друга на расстоянии ровно в \(π\), то все значения можно записать одной формулой:

Ответ: \(x=\) \(\frac<π><4>\) \(+πk\), \(k∈Z\).

Пример. Решите тригонометрическое уравнение \(\cos⁡(3x+\frac<π><4>)=0\).
Решение:

Опять воспользуемся числовой окружностью.
1) Построим окружность, оси \(x\) и \(y\).
2) На оси косинусов (ось \(x\)) отметим \(0\).
3) Проведем перпендикуляр к оси косинусов через эту точку.
4) Отметим точки пересечения перпендикуляра и окружности.
5) Подпишем значения этих точек: \(-\) \(\frac<π><2>\),\(\frac<π><2>\) .
6)Выпишем все значение этих точек и приравняем их к аргументу косинуса (к тому что внутри косинуса).

7) Дальше решать в таком виде несколько трудновато, разобьем уравнение на два.

8) Как обычно в уравнениях будем выражать \(x\).
Не забывайте относиться к числам с \(π\), так же к \(1\), \(2\), \(\frac<1><4>\) и т.п. Это такие же числа, как и все остальные. Никакой числовой дискриминации!

Ответ: \(x=\) \(\frac<π><12>\) \(+\) \(\frac<2πk><3>\) \(x=-\) \(\frac<π><4>\) \(+\) \(\frac<2πk><3>\) , \(k∈Z\).

Сводить тригонометрические уравнения к простейшим – задача творческая, тут нужно использовать и тригонометрические формулы , и особые методы решений уравнений:
— Метод введения новой переменной (самый популярный в ЕГЭ).
— Метод разложения на множители .
— Метод вспомогательных аргументов.

Рассмотрим пример решения квадратно-тригонометрического уравнения

Пример. Решите тригонометрическое уравнение \(2\cos^2⁡x-5\cos⁡x+2=0\)
Решение:

Сделаем замену \(t=\cos⁡x\).

Наше уравнение превратилось в типичное квадратное . Можно его решить с помощью дискриминанта .

\(D=25-4 \cdot 2 \cdot 2=25-16=9\)

Делаем обратную замену.

Первое уравнение решаем с помощью числовой окружности.
Второе уравнение не имеет решений т.к. \(\cos⁡x∈[-1;1]\) и двум быть равен не может ни при каких иксах.

Запишем все числа, лежащие на числовой окружности в этих точках.

Ответ: \(x=±\) \(\frac<π><3>\) \(+2πk\), \(k∈Z\).

Пример решения тригонометрического уравнения с исследованием ОДЗ:

Пример(ЕГЭ). Решите тригонометрическое уравнение \(\frac<2\cos^2⁡x-\sin<⁡2x>>\) \(=0\)

Есть дробь и есть котангенс – значит надо записать ОДЗ . Напомню, что котангенс это фактически дробь:

Потому ОДЗ для ctg\(x\): \(\sin⁡x≠0\).

Отметим «нерешения» на числовой окружности.


источники:

http://www.uznateshe.ru/cosx-a/

http://cos-cos.ru/math/93/